نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری رشته فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، واحد بجنورد، دانشگاه آزاد اسلامی، بجنورد، ایران.
2 استادیار گروه تربیت بدنی و علوم ورزشی، واحد بجنورد، دانشگاه آزاد اسلامی، بجنورد، ایران.
3 استادیار گروه فیزیک پزشکی و رادیولوژی، دانشگاه علوم پزشکی خراسان شمالی، بجنورد، ایران.
4 استادیار گروه بیوتکنولوژی پزشکی، دانشگاه علوم پزشکی خراسان شمالی، بجنورد، ایران.
چکیده
زمینه و هدف: ضایعات نخاعی شرایطی است که به واسطه از بین رفتن حس، حرکت و حرکات ارادی اندامهای تحتانی رخ میدهد. هدف از مطالعه حاضر بررسی تأثیر چهار هفته تمرین هوازی با تکرار یک و دو جلسه در روز بر عملکرد حرکتی و بیان ژن گیرنده تروپومیوزین کیناز B (TrkB) و فسفاتیدیل اینوزیتول-3-کیناز (PI3K) هیپوکمپ رتهای مبتلا به ضایعه نخاعی بود. روش تحقیق: این مطالعه تجربــی روی رتهای نر بالغ و جوان اجرا شـد. حیوانات بهطور تصادفی به شش گروه شامل کنترل سالم، آسیب نخاعی، آسیب نخاعی + پروتکل تمرین اول، کنترل سالم + پروتکل تمرین اول، آسیب نخاعی + پروتکل تمرین دوم و کنترل سالم + پروتکل تمرین دوم (هر گروه هفت سر) تقسیم شدند. ابتدا، گروهها (به غیر از گروههای کنترل سالم) تحت بیهوشی عمومی و آسیب نخاعی قرار گرفتند. پس از دو هفته ریکاوری، همه رتها بهمدت چهار هفته، دو نوع تمرین هوازی با تکرار یک و دو جلسه تمرین در روز را انجام دادند. پس از دوره تمرینی، آزمون های حرکتی و مولکولی جهت سنجش تغییرات بیان ژن گیرنده TrkB و PI3K هیپوکمپ انجام گردید. از روش تحلیل واریانس یکراهه برای مقایسه تغییرات بین گروهی در سطح معنیداری 05/0>p استفاده شد. یافتهها: اجرای چهار هفته تمرینات یک و دو جلسهای هوازی موجب افزایش معنیدار بیان ژن گیرنده TrkB و PI3K در گروههای آسیب نخاعی + پروتکل تمرین اول و آسیب نخاعی + پروتکل تمرین دوم نسبت به گروه آسیب نخاعی شد. تغییرات معنیداری در بیان ژن PI3K بین دو گروه آسیب نخاعی با دو تمرین هوازی مشاهده نشد، اما تغییرات در بیان ژن TrkB بین گروه آسیب نخاعی + پروتکل تمرین اول و آسیب نخاعی + پروتکل تمرین دوم معنیدار بود. آزمون حرکتی نیز بهبودی عملکرد حرکتی را در هفته چهارم در گروه آسیب نخاعی + پروتکل تمرین دوم نشان داد. نتیجهگیری: پروتکلهای تمرینی (به ویژه تمرین با تکرار دو بار در روز) علاوه بر ایجاد بهبود حرکتی در حیوانات دچار ضایعه نخاعی، بر بیان ژن گیرنده TrkB و PI3K مؤثر است و میتواند عاملی برای رشد آکسونی و بقای نورونی در بهبودی ضایعه نخاعی باشد.
کلیدواژهها
عنوان مقاله [English]
The effect of four-week of aerobic training with repetition of one and two sessions per day on the gene expression of TrkB and PI3K receptor in hippocampal rats with spinal cord injury
نویسندگان [English]
- Mahdi Ziaee Bashirzad 1
- Sadegh Cheragh-Birjandi 2
- Mohamad Amin Younessi Heravi 3
- Reza Salarinia 4
1 Ph.D Candidate in Exercise Physiology , Department of Physical Education and Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
2 Assistant Professor at Department of Physical Education and Sport Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
3 Assistant Professor at Department of Medical Physics and Radiology, North Khorasan University of Medical Sciences, Bojnurd, Iran.
4 Assistant Professor at Department of Advanced Technologies, School of Medicine, Bojnurd, Iran.
چکیده [English]
Extended Abstract
Background and Aim: Spinal cord injuries result in the loss of sensation and voluntary movement in the lower limbs (1). Tropomyosin receptor kinase B (TrkB), a neurotrophin receptor, was named after the oncogene that led to its discovery (2). Phosphatidylinositol-3-kinases (PI3Ks) are a group of multifunctional enzymes involved in various metabolic processes that regulate cellular physiology (3).
Aerobic exercise has been proposed as a promising noninvasive strategy for maintaining motor and respiratory muscle flexibility following spinal cord injury (4). This study aimed to examine the effects of four weeks of aerobic training, with one or two sessions per day, on motor performance and hippocampal TrkB and PI3K gene expression in rats with spinal cord injury.
Materials and Methods: Forty-two male rats (age: 10–12 weeks, weight: 225–275 g) were randomly divided into six equal groups as: healthy control group, healthy control group + first training protocol, healthy control group + second training protocol, spinal cord injury group, spinal cord injury group + first training protocol, and spinal cord injury group + second training protocol. Seven rats were included in each group (5). All groups, except the healthy control group, underwent general anesthesia and spinal cord injury (SCI). Anesthesia was induced via intraperitoneal injection of ketamine (75 mg/kg body weight) and xylazine (10 mg/kg body weight).
After marking the incision site, a 2.5 cm longitudinal incision was made along the spine. The superficial and deep fascia were dissected, and the muscles adjacent to the T9–T11 vertebrae were retracted. Laminectomy was performed at the T11 vertebra using a dental burr attached to a small drill. The spinal cord was then injured by delivering a 25 mm drop of a 10-gram weight via a hollow cylinder while the vertebrae were stabilized using a stereotaxic device. The muscles and fascia were immediately sutured using absorbable suture (No. 4-0). The healthy groups underwent laminectomy only without spinal cord injury (6).
After two weeks of recovery, all rats performed two types of aerobic exercise with one and two training sessions per day for four weeks. After the training period, motor and molecular tests were performed to measure changes in hippocampal TrkB and PI3K receptor gene expression. One-way analysis of variance was used to compare changes between groups at a significance level of p<0.05.
Results: The results of TrkB receptor gene expression among the groups show that a significant increase in gene expression was observed in the healthy control + one training session per day group compared to the healthy control group and in the healthy control + two training sessions per day group compared to the control group. However, the increase in gene expression in one training session per day compared to the two training sessions per day group was not significantly different. TrkB gene expression in the spinal cord injury model was significantly reduced compared to the control group. This decrease in expression was observed in both spinal cord injury + one and two training sessions per day groups compared to the control group. In addition, TrkB gene expression showed a significant increase in the spinal cord injury + one and two training sessions per day groups compared to the spinal cord injury group. On the other hand, significant changes in gene expression were observed between the spinal cord injury + one training session per day group and the spinal cord injury + two training sessions per day group. PI3K receptor gene expression in the healthy control group was significantly increased compared to the spinal cord injury groups. This was while the changes in the healthy control group showed a significant decrease compared to the healthy control + one and two training sessions per day groups. A significant decrease was observed between the spinal cord injury group and the spinal cord injury + one training session per day group and spinal cord injury + two training sessions per day group. There was no significant difference in gene expression between the spinal cord injury + one training session per day group and spinal cord injury + two training sessions per day group. Similarly, no difference was observed between the healthy control group + one training session per day group and the healthy control + two training sessions per day group.
Conclusion: Exercise protocols, particularly those performed twice daily, not only enhance motor function in animals with spinal cord injury but also positively influence TrkB and PI3K receptor gene expression. These effects may contribute to axonal growth and neuronal survival, playing a crucial role in spinal cord injury recovery.
Keywords: Aerobic exercise, Tropomyosin receptor kinase B, Phosphoinositide 3-kinase, Spinal cord injury.
Ethical Considerations
This study was conducted with the approval of the Ethics Committee of the Vice Chancellor for Research and Technology of North Khorasan University of Medical Sciences with the ethics code IR.NKUMS.REC.1402.058.
Compliance with ethical guideline
Ethical guidelines for working with laboratory animals were strictly followed, including provisions for adequate food, water, and appropriate housing conditions. Ethical considerations were also observed in the humane euthanasia of the mice.
Funding
This research is based on a doctoral thesis from Islamic Azad University, Bojnourd Branch, and was conducted without any financial support.
Conflicts of interest
There are no conflicts of interest regarding this article.
کلیدواژهها [English]
- Aerobic exercise
- Tropomyosin receptor kinase B
- Phosphoinositide 3-kinase
- Spinal cord injury
2. Zaninetti M, Dubois-Dauphin M, Lindstrom J, Raggenbass M. Nicotinic acetylcholine receptors in neonatal motoneurons are regulated by axotomy: an electrophysiological and immunohistochemical study in human bcl-2 transgenic mice. Neuroscience. 2000;100(3):589-97. https://doi.org/10.1016/S0306-4522(00)00303-1
3. Jain KK, Jain KK. Neurotrophic factors. Applications of Biotechnology in Neurology. Springer Science & Business Media; 2013:295-360. https://doi.org/10.1007/978-1-62703-272-8
4. Martin-Zanca D, Hughes SH, Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature. 1986;319(6056):743-8. https://doi.org/10.1038/319743a0
5. Acobson AG, Gordon R. Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation. Journal of Experimental Zoology. 1976;197(2):191-246. https://doi.org/10.1002/jez.1401970205
6. Hauswirth AG, Ford KJ, Wang T, Fetter RD, Tong A, Davis GW. A postsynaptic PI3K-cII dependent signaling controller for presynaptic homeostatic plasticity. Elife. 2018;7:e31535. https://doi.org/10.7554/eLife.31535
7. Pezet S, McMahon SB. Neurotrophins: mediators and modulators of pain. Annual Review of Neuroscience. 2006;29(1):507-38. https://doi.org/10.1146/annurev.neuro.29.051605.112929
8. Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Experimental Neurology. 2008;209(2):294-301. https://doi.org/10.1016/j.expneurol.2007.05.014
9. Sadeghi M, Ghasemi G. Effect of 12 weeks Rebound Therapy Exercise on constipation and abdominal pain in Spinal Cord Injury patients. Journal for Research in Sport Rehabilitation. 2017;5(10):41-8. 9. [In Persian]. https://doi.org/10.22084/rsr.2017.13570.1326
10. Jesus I, Michel-Flutot P, Deramaudt TB, Paucard A, Vanhee V, Vinit S, et al. Effects of aerobic exercise training on muscle plasticity in a mouse model of cervical spinal cord injury. Scientific Reports. 2021;11(1):112. https://doi.org/10.1038/s41598-020-80478-9
11. Hartman MJ, Clark B, Bemben DA, Kilgore JL, Bemben MG. Comparisons between twice-daily and once-daily training sessions in male weight lifters. International Journal of Sports Physiology and Performance. 2007;2(2):159-69. https://doi.org/10.1123/ijspp.2.2.159
12. Salarinia R, Sadeghnia HR, Alamdari DH, Hoseini SJ, Mafinezhad A, Hosseini M. Platelet rich plasma: Effective treatment for repairing of spinal cord injury in rat. Acta Orthopaedica et Traumatologica Turcica. 2017;51(3):254-7. https://doi.org/10.1016/j.aott.2017.02.009
13. de Barros Filho TEP, Molina AEIS. Analysis of the sensitivity and reproducibility of the Basso, Beattie, Bresnahan (BBB) scale in Wistar rats. Clinics. 2008;63(1):103-8. https://doi.org/10.1590/S1807-59322008000100018
14. Chae C-H, Jung S-L, An S-H, Jung C-K, Nam S-N, Kim H-T. Treadmill exercise suppresses muscle cell apoptosis by increasing nerve growth factor levels and stimulating p-phosphatidylinositol 3-kinase activation in the soleus of diabetic rats. Journal of Physiology and Biochemistry. 2011;67:235-41. https://doi.org/10.1007/s13105-010-0068-9
15. Wu Q, Cao Y, Dong C, Wang H, Wang Q, Tong W, et al. Neuromuscular interaction is required for neurotrophins-mediated locomotor recovery following treadmill training in rat spinal cord injury. PeerJ. 2016;4:e2025. https://doi.org/10.7717/peerj.2025
16. Shabkhiz F, Mojtahedi S, Akbarnejad Gharehlou A, Amirshaghaghi F. Effects of two types of continues and interval endurance training on protein levels of brain derived neurotrophic factor and tyrosine kinase B receptor in the hippocampus of adult male rats. Journal of Practical Studies of Biosciences in Sport. 2021;9(18):48-57. [In Persian]. https://doi.org/10.22077/jpsbs.2020.3121.1542
17. Eslami R, Gharakhanlou R, Mowla J, Rajabi H, Mohammadkhani R. Effect of resistance exercise on protein content and mRNA expression of NT 4/5 in rat slow and fast muscles. Journal of Gorgan University of Medical Sciences. 2014;16(1):35-41. [In Persian]. http://goums.ac.ir/journal/article-1-1971-fa.html
18. Fang ZH, Lee CH, Seo MK, Cho H, Lee JG, Lee BJ, et al. Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats. Neuroscience Research. 2013;76(4):187-94. https://doi.org/10.1016/j.neures.2013.04.005
19. Ditterline BEL, Aslan SC, Randall DC, Harkema SJ, Castillo C, Ovechkin AV. Effects of respiratory training on heart rate variability and baroreflex sensitivity in individuals with chronic spinal cord injury. Archives of Physical Medicine and Rehabilitation. 2018;99(3):423-32. https://doi.org/10.1016/j.apmr.2017.06.033
20. Bilchak JN, Caron G, Côté M-P. Exercise-induced plasticity in signaling pathways involved in motor recovery after spinal cord injury. International Journal of Molecular Sciences. 2021;22(9):4858. https://doi.org/10.3390/ijms22094858
21. Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK. Skeletal muscle adaptation: training twice every second day vs. training once daily. Journal of Applied Physiology. 2005;98(1):93-9. https://doi.org/10.1152/japplphysiol.00163.2004
22. Shamsaei N, Abdi H. The effect of one and two sessions endurance and resistance exercise training per day on serum levels of IgA and cortisol in soccer players. EBNESINA. 2021;23(2):26-35. [In Persian]. https://doi.org/10.22034/23.2.26
23. Bøyum A, Rønsen O, Tennfjord V, Tollefsen S, Haugen A, Opstad P, et al. Chemiluminescence response of granulocytes from elite athletes during recovery from one or two intense bouts of exercise. European Journal of Applied Physiology. 2002;88:20-8. https://doi.org/10.1007/s00421-002-0705-2
24. Ronsen O, Kjeldsen-Kragh J, Haug E, Bahr R, Pedersen BK. Recovery time affects immunoendocrine responses to a second bout of endurance exercise. American Journal of Physiology-Cell Physiology. 2002;283(6):C1612-C20. https://doi.org/10.1152/ajpcell.00242.2002