نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه صنعتی شاهرود، سمنان، ایران.

2 دانشیار گروه علوم زیستی ورزش، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه صنعتی شاهرود، سمنان، ایران.

3 استادیار گروه تربیت بدنی و علوم ورزشی، دانشکده علوم انسانی، دانشگاه دامغان، سمنان، ایران.

چکیده

زمینه و هدف: فعالیت بدنی تغییرات ساختاری و عملکردی در قلب به‌ویژه بطن چپ ایجاد می‌‌کند که به‌شدت و مدت ورزش بستگی دارد. پژوهش حاضر اثر مدت‌زمان شنا را بر بیان ژن هیپرتروفی، عامل‌‌ افزایش ‌دهنده‌ ‌‌میوسیت 2c (MEF2c) بطن چپ موش‌‌های صحرایی نر بررسی می‌‌نماید. روش تحقیق: تعداد 18سر موش نر (20±200 گرم) به سه گروه کنترل، شنای میان‌مدت و بلندمدت تقسیم شدند. گروه‌‌های تمرینی (10 هفته و 5 روز در هفته) در آب 2±28 درجه شنا کردند. در هر جلسه گروه میان‌مدت یک ساعت و گروه بلندمدت از هفته‌‌ پنجم تا دهم سه ساعت شنا کردند. برای سنجش بیان ژن MEF2c از روش Real-time PCR استفاده شد. نتایج با استفاده از روش تحلیل واریانس یک‌‌طرفه و آزمون تعقیبی توکی در سطح معنی‌‌داری 0/05>p استخراج گردید. یافته‌‌ها: نتایج نشان داد که 10 هفته تمرین شنا در هر دو گروه تمرینی در مقایسه با گروه کنترل، منجر به کاهش بیان ژن MEF2c (p=0/001) می شود. به‌علاوه، وزن قلب و نسبت وزن قلب/ سطح رویة بدن در گروه شنای میان‌مدت و بلند‌‌مدت در مقایسه با گروه کنترل؛ افزایش معنی داری (0/05>p) پیدا کرد. نتیجه‌‌گیری: تمرین شنای به اجرا درآمده توانست بیان ژن MEF2c مرتبط با هایپرتروفی بطن چپ را کاهش دهد و زمینه را برای فعالیت عوامل مرتبط با هایپرتروفی مهیا ‌‌سازد. ازاین‌رو انجام این تمرینات به ویژه شنای طولانی‌مدت را می‌‌توان به‌عنوان مدلی برای بهبود عملکرد قلب توصیه نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Comparison of the effect of medium and long-term swimming on the left ventricular MEF2c gene expression in male rats

نویسندگان [English]

  • Javad Arefi 1
  • Ali Hassani 2
  • Maliheh Ardakani-zadeh 3

1 MSc in Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahrood University of Technology, Shahrood, Iran.

2 Associate Professor, Department of Sport Biosciences, Faculty of Physical Education and Sport Sciences, Shahrood University of Technology, Shahrood, Iran.

3 Assistant Professor, Department of Physical Education and Sport Sciences, Faculty of Humanities, Damghan University, Damghan Iran.

چکیده [English]

Background and Aim: Physical activity causes structural and functional changes in the heart, especially the left ventricle, which depends on the intensity and duration of exercise. The present study investigated the effect of swimming duration on the expression of the hypertrophy gene, the growth factor of myocyte 2c (MEF2c) in the left ventricle of male rats. Materials and Methods: Eighteen male rats (200 ±20 g) were divided into three groups: control, medium and long term swimming. Exercise groups (10 weeks and five days a week) swam in 28 ±2 degrees water. During each session, the intermediate group swam for one hour and the long-term group after the fifth week to the last week swam for three hours. Real-time PCR was used to measure the expression of MEF2c gene. Differences were determined by one-way ANOVA method and group comparisons were determined by Tukey post hoc test at the significance level of p≤0.05. Results: The results showed that 10 weeks of swimming training in both training groups compared to the control group, significantly decreased the MEF2c gene expression (p=0.001). In addition, heart weight and heart weight / body surface area ratio in the swimming group medium and long term compared to the control group; were significantly Increased (p<0.05). Conclusion: Swimming training can reduce the expression of MEF2c gene associated with left ventricular hypertrophy and pave the way for the activity of factors associated with hypertrophy. Therefore, swimming trainings especially long-term exercise, can be recommended as an convenient model for improving of heart function

کلیدواژه‌ها [English]

  • Medium swimming
  • Long swimming
  • MEF2c gene expression
Bahram, M.E., Pourvaghar, M. J., Mojtahedi, H., & Movahadi, A.R. (2013). The effect of 8 weeks of aerobic exercise training on some of cardiovascular endurance and body composition characteristics of male high school students in Kashan. Journal of Practical Studies of Biosciences in Sport, 2(4), 90-100. [In Persian]
D’Andrea, A., Limongelli, G., Caso, P., Sarubbi, B., Della Pietra, A., Brancaccio, P., & Calabrò, R. (2002). Association between left ventricular structure and cardiac performance during effort in two morphological forms of athlete’s heart. International Journal of Cardiology, 86(2-3), 177-184. 
Da Silva, J.N.D., Fernandes, T., Soci, U.P., Monteiro, A.W., Phillips, M.I., De Oliveira, E.M. (2012). Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Medicine Science in Sports Exercise, 44(8), 1453-62.
de Witte, D., Wijngaarden, L. H., van Houten, V. A., van den Dorpel, M. A., Bruning, T. A., van der Harst, E., ... & Niezen, R.A. (2020). Improvement of cardiac function after Roux-en-Y gastric bypass in morbidly obese patients without cardiac history measured by cardiac MRI. Obesity Surgery, 30(7), 2475-2481.
Desjardins, C. A., & Naya, F. J. (2017). Antagonistic regulation of cell-cycle and differentiation gene programs in neonatal cardiomyocytes by homologous MEF2 transcription factors. Journal of Biological Chemistry, 292(25), 10613-10629.
Fathi, M. (2018). Non change of MEF2C gene expression of rats left ventricle due to endurance activity. Journal of Sabzevar University of Medical Sciences, 24(6),45-51. [In Persian]
Khajehlandi, M., Bolboli, L., Siahkuhian, M., Rami, M., & Tabandeh, M. (2020). The effect of moderate-intensity endurance training onHDAC4 and CaMKII genes expression in myocardium of male rats. Journal of Kashan University of Medical Sciences, 24(4), 357-365. [In Persian]
Khajehlandi, M., Bolboli, L., Siahkohian, M., Rami, M., & Tabandeh, M. (2020). The effect of moderate-intensity endurance training on cortisol levels, MEF-2C and MMP-2 gene expression in male rats myocardiom: interventional and experimental study. Journal of Urmia University of Medical Science, 31(4), 305-315. [In Persian]
Kılıç, M., Ulusoy, Ö., Cırrık, S., Hindistan, I.E., & Gul Özkaya, Y. (2014). Effect of exercise intensity on cerebrospinal fluid interleukin-6 concentration during recovery from exhaustive exercise in rats. Acta physiologica Hungarica, 101(1), 21-31. 
Lee, B.A., & Oh, D.J. (2016). The effects of long-term aerobic exercise on cardiac structure, stroke volume of the left ventricle, and cardiac output. Journal of Exercise Rehabilitation, 12(1), 37.
Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402-408. 
Luijsterburg, M.S., Dinant, C., Lans, H., Stap, J., Wiernasz, E., Lagerwerf, S., & Dobrucki, J.W. (2009). Heterochromatin protein 1 is recruited to various types of DNA damage. Journal of Cell Biology, 185(4), 577-586. 
Medeiros, A., Oliveira, E. M. d., Gianolla, R., Casarini, D. E., Negrão, C., & Brum, P. C. (2004). Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Brazilian Journal of Medical and Biological Research, 37(12), 1909-1917. 
Mimic-Oka, J., Simic, D.V., & Simic, T.P. (1999). Free radicals in cardiovascular diseases. Journal of Medicin and Biology, 6(1), 11-22. 
Moeini, M., Behpoor, N., & Tadibi, V. (2019). The effect of 8 weeks high intensity interval training on the expression of PI3K in the left ventricle and insulin resistance of male Wistar rats with type 2 diabetes. Journal of Practical Studies of Biosciences in Sport, 8(16), 48-58. [In Persian]
Naderi, A., Alaei, H., Sharifi, M.R., & Hoseini, M. (2008). The comparison between effect of short-term and mid-term exercise on the enthusiasm of the male rats to self-administer morphine. Iranian Journal of Basic Medical Sciences, 9(4), 272-280. [In Persian]
Obad, A., Palada, I., Valic, Z., Ivančev, V., Baković, D., Wisløff, U., Dujić, Ž. (2007).The effects of acute oral antioxidants on diving‐induced alterations in human cardiovascular function. The Journal of Physiology, 578(3), 859-870. 
Pelliccia, A., Maron, M.S., & Maron, B.J. (2012). Assessment of left ventricular hypertrophy in a trained athlete: differential diagnosis of physiologic athlete’s heart from pathologic hypertrophy. Progress in Cardiovascular Diseases, 54(5), 387-396.
Potthoff, M.J., & Olson, E.N. (2007). MEF2: a central regulator of diverse developmental programs. Development, 134(23), 4131-4140.
Richter, E.A., & Ruderman, N.B. (2009). AMPK and the biochemistry of exercise: implications for human health and disease. Biochemical Journal, 418(2), 261-275.
Schneider, C.D., & Oliveira, A.R.D. (2004). Oxygen free radicals and exercise: mechanisms of synthesis and adaptation to the physical training. Revista Brasileira de Medicinado Esporte, 10(4), 308-313.
Seo, J.S., Lee, S.Y., Won, K.J., Kim, D.J., Sohn, D.S., Yang, K.M., Kim, H.D. (2000). Relationship between normal heart size and body indices in Korean. Journal of Korean Medical Science, 15(6), 641-646.
Taye, A., Abouzied, M.M., & Mohafez, O.M. (2013). Tempol ameliorates cardiac fibrosis in streptozotocin-induced diabetic rats: role of oxidative stress in diabetic cardiomyopathy. Journal of The German Society of Experimental and Clinical Pharmacology and Toxicology (DGPT), 386(12), 1071-1080. 
Vega, R.B., Konhilas, J.P., Kelly, D.P., & Leinwand, L.A. (2017). Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metabolism, 25(5), 1012-1026. 
Wang, Z., Qin, G., & Zhao, T.C. (2014). HDAC4: mechanism of regulation and biological functions. Epigenomics,6(1), 139-150. 
Wei, J., Joshi, S., Speransky, S., Crowley, C., Jayathilaka, N., Lei, X., ... & Bishopric, N. H. (2017). Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface. JCI Insight, 2(17), e91068.
West, J.B. (1990). Best and Taylor’s physiological basis of medical practice. Williams & Wilkins publication, 1990.