نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی کارشناسی ارشد، گروه تربیت بدنی و علوم ورزشی، واحد لامرد، دانشگاه آزاد اسلامی، لامرد، فارس، ایران.
2 استادیار گروه تربیت بدنی و علوم ورزشی، واحد لامرد، دانشگاه آزاد اسلامی، لامرد، فارس، ایران.
3 استاد گروه تربیت بدنی و علوم ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان، خرمآباد، ایران.
چکیده
زمینه و هدف: تمرینات ورزشی میتواند به حفظ سلامت و شکلپذیری دستگاه عصبی کمک کند. تروپومودولین-۲ (Tmod2) نقشهای مهمی در سیستم عصبی مرکزی داشته و با اعمال مختلفی همچون تشکیل سیناپس جدید و افزایش جوانهزنی عصبی، همراه است. هدف از انجام این مطالعه، بررسی تأثیر تمرین استقامتی با شدت پایین بر سطوح پروتئین Tmod2 و مالون دی آلدئید (MDA) در بافت هیپوکمپ موشهای صحرائی نر ویستار بود. روش تحقیق: پژوهش حاضر تجربی است. برای این منظور تعداد 20 سر موش صحرایی بهطور تصادفی به دو گروه شامل تمرین (10 موش) و کنترل (10 موش) تقسیم شدند. برنامه تمرین استقامتی به مدت شش هفته و با شدتی برابر با 20 تا 40 درصد حداکثر سرعت دویدن اجرا شد. زمان 48 ساعت پس از آخرین جلسه تمرینی، موشها تشریح و بافت هیپوکمپ استخراج شد. جهت سنجش بیان Tmod2 از روش ایمونوهیستوشیمی و برای ارزیابی غلظت MDA از روش الایزا استفاده گردید. برای مقایسه گروهها از آزمون آماری t مستقل در سطح معنی داری 0/05>p استفاده شد. یافتهها: تمرین استقامتی، بیان Tmod2 را در گروه تمرین نسبت به کنترل به صورت معنیداری افزایش (0/01=p) و غلظت MDA را به صورت معنیداری کاهش داد (0/001=p). نتیجهگیری: تمرین استقامتی اثر سودمندی بر Tmod2 و سیستم عصبی دارد. با این حال، کاهش غلظت MDA می تواند نشانه شاخص استرس اکسایشی باشد؛ تغییری که خود نشان از اثرات محافظتی این شیوه تمرینی در برابر استرس اکسایشی دارد.
کلیدواژهها
عنوان مقاله [English]
The effect of six weeks low-intensity endurance training on tropomodulin-2 protein expression and malondialdehyde in hippocampal tissue of male Wistar rats
نویسندگان [English]
- Seyed Abdolreza Sajjadi 1
- Hadi Ghaedi 2
- Masoud Rahmati 3
1 MS.c Student, Department of Physical Education and Sports Sciences, Lamerd Branch, Islamic Azad University, Lamerd, Fars, Iran.
2 Assistant Professor at Department of Physical Education and Sports Sciences, Lamerd Branch, Islamic Azad University, Lamerd, Fars, Iran.
3 Professor at Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Lorestan University, Khorramabad, Iran.
چکیده [English]
Background and Aim: Exercise and training can maintain the health and plasticity of the nervous system. Tropomodulin-2 (Tmod2) plays an important roles in the central nervous system and it correlated with various functions such as the formation of new synapses and increased neuritis extension. The aim of this study was to evaluate the effect of low-intensity endurance training on Tmod2 protein levels and Malondialdehyde (MDA) in the hippocampal tissue of male Wistar rats. Materials and Methods: For this experimental research, 20 rats were randomly divided into two groups including training (n=10) and control (n=10), that for the training group, the endurance training program was run for six weeks at 20-40 percent of maximum running speed. Forty eight hours after the last training session, the rats were dissected and hippocampal tissue was extracted. Immunohistochemistry and Elisa methods were used for measuring the expression of Tmod2 protein and MDA respectively. Independent t-test was used to compare the groups at the significant level of p<0/05. Results: Based on the results, low-intensity endurance training significantly increased the expression of Tmod2 protein (p=0.01) but the MDA concentration (p=0.001) reduced during training as compared to the control group. Conclusion: Endurance training showed a beneficial effect on Tmod2 and also the nervous system; however, reducing the concentration of MDA can be considered as a decreasing of the oxidative stress; a change that shows the protective effects of this training method against oxidative stress.
کلیدواژهها [English]
- Endurance training
- Tropomodulin-2
- Malondialdehyde
- Hippocampus
- Rats
Allison, D.W., Gelfand, V.I., Spector, I., & Craig, A.M. (1998). Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. The Journal of Neuroscience, 18(7), 2423-2436.
Arikkath, J., & Reichardt, L. (2008). Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends in Neurosciences, 31(9), 487-494.
Azimidokht, S.M.A., Gharakhanlou, R., Naghdi, N., Khodadadi, D., & Zarezadehmehrizi, A.A. (2019). The effect of the treadmill running on genes expression of the PGC-1α, FNDC5 and BDNF in hippocampus of male rats. Journal Practical of Biosciences in Sport, 7(14), 91-101. [In Persian]
Ballatore, C., Lee, V. M.-Y., & Trojanowski, J.Q. (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nature Reviews Neuroscience, 8(9), 663-673.
Benitez-King, G., Ramirez-Rodriguez, G., Ortiz, L., & Meza, I. (2004). The neuronal cytoskeleton as a potential therapeutical target in neurodegenerative diseases and schizophrenia. Current Drug Targets-CNS & Neurological Disorders, 3(6), 515-533.
Chae, C., Jung, S., An, S., Park, B., Wang, S., Cho, I., ... & Kim, H. (2009). Treadmill exercise improves cognitive function and facilitates nerve growth factor signaling by activating mitogen-activated protein kinase/extracellular signal-regulated kinase1/2 in the streptozotocin-induced diabetic rat hippocampus. Neuroscience, 231, 445-445.
Cox, P.R., Fowler, V., Xu, B., Sweatt, J.D., Paylor, R., & Zoghbi, H.Y. (2003). Mice lacking Tropomodulin-2 show enhanced long-term potentiation, hyperactivity, and deficits in learning and memory. Molecular and Cellular Neuroscience, 23(1), 1-12.
Cox, P.R., & Zoghbi, H.Y. (2000). Sequencing, expression analysis, and mapping of three unique human tropomodulin genes and their mouse orthologs. Genomics, 63(1), 97-107.
Devi, S.A., & Kiran, T.R. (2004). Regional responses in antioxidant system to exercise training and dietary vitamin E in aging rat brain. Neurobiology of Aging, 25(4), 501-508.
Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., ... & White, S.M. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017-3022.
Fan, B., Jabeen, R., Bo, B., Guo, C., Han, M., Zhang, H., ... & Wei, J. (2020). What and how can physical activity prevention function on Parkinson’s disease? Oxidative Medicine and Cellular Longevity, 2020.
Fath, T., Fischer, R.S., Dehmelt, L., Halpain, S., & Fowler, V.M. (2011). Tropomodulins are negative regulators of neurite outgrowth. European Journal of Cell Biology, 90(4), 291-300.
Gligoroska, J.P., & Manchevska, S. (2012). The effect of physical activity on cognition–physiological mechanisms. Materia socio-medica, 24(3), 198.
Hötting, K., & Röder, B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews, 37(9), 2243-2257.
Jahangiri, Z., Gholamnezhad, Z., & Hosseini, M. (2019). The effects of exercise on hippocampal inflammatory cytokine levels, brain oxidative stress markers and memory impairments induced by lipopolysaccharide in rats. Metabolic Brain Disease, 34(4), 1157-1169.
Kazemi, A. (2019). The effect of continuous endurance training on the level of TMOD2 protein in the spinal cord of Wistar male rats with diabetic neuropathy. Community Health Journal, 12(4), 60-72. [In Persian]
Keller, J.N., & Mattson, M.P. (1998). Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Reviews in the Neurosciences, 9(2), 105-116.
Kuipers, S.D., & Bramham, C.R. (2006). Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Current Opinion in Drug Discovery and Development, 9(5), 580.
Lambert, T.J., Fernandez, S.M., & Frick, K.M. (2005). Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice. Neurobiology of Learning and Memory, 83(3), 206-216.
Lariviere, R.C., & Julien, J.P. (2004). Functions of intermediate filaments in neuronal development and disease. Journal of Neurobiology, 58(1), 131-148.
Leite, H.R., Mourão, F.A., Drumond, L.E., Ferreira‐Vieira, T.H., Bernardes, D., Silva, J.F., ... & Carvalho-Tavares, J. (2012). Swim training attenuates oxidative damage and promotes neuroprotection in cerebral cortical slices submitted to oxygen glucose deprivation. Journal of Neurochemistry, 123(2), 317-324.
Lekhi, C., Gupta, P.H., & Singh, B. (2007). Influence of exercise on oxidant stress products in elite Indian cyclists. British Journal of Sports Medicine, 41(10), 691-693.
Loprinzi, P. (2019). The effects of exercise on long-term potentiation: A candidate mechanism of the exercise-memory relationship. OBM Neurobiology, 3(2), 1-1.
Mojtahedi, S., Tabrizi, A., & Hosseini, S.E. (2021). Effect of running time on cell proliferation in the hippocampus of male adult rats. Journal Practical of Biosciences in Sport, 9(20), 8-16. [In Persian]
Omotade, O.F., Rui, Y., Lei, W., Yu, K., Hartzell, H.C., Fowler, V.M., & Zheng, J.Q. (2018). Tropomodulin isoform-specific regulation of dendrite development and synapse formation. Journal of Neuroscience, 38(48), 10271-10285.
Parise, G., Phillips, S.M., Kaczor, J.J., & Tarnopolsky, M.A. (2005). Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radical Biology and Medicine, 39(2), 289-295.
Patten, A.R., Sickmann, H., Hryciw, B.N., Kucharsky, T., Parton, R., Kernick, A., & Christie, B.R. (2013). Long-term exercise is needed to enhance synaptic plasticity in the hippocampus. Learning & Memory, 20(11), 642-647.
Petzinger, G.M., Fisher, B.E., McEwen, S., Beeler, J.A., Walsh, J.P., & Jakowec, M.W. (2013). Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. The Lancet Neurology, 12(7), 716-726.
Pinho, R.A., Andrades, M.E., Oliveira, M.R., Pirola, A.C., Zago, M.S., Silveira, P.C., ... & Moreira, J.C.F. (2006). Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise. Cell Biology International, 30(10), 848-853.
Radak, Z., Toldy, A., Szabo, Z., Siamilis, S., Nyakas, C., Silye, G., ... & Goto, S. (2006). The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. Neurochemistry International, 49(4), 387-392.
Rahmati, M., & Kazemi, A. (2019). Various exercise intensities differentially regulate GAP-43 and CAP-1 expression in the rat hippocampus. Gene, 692, 185-194.
Rahmati, M., Shariatzadeh, M., Kazemi, A., & Taherabadi, S.J. (2019). High-intensity interval training increasing ADP-ribosylation factor 6 and Cytochrome C in visceral adipose tissue of male Wistar rats. Obesity Medicine, 14, 100089.
Rahmati, M., Keshvari, M., Mirnasouri, R,. & Chehelcheraghi, F. (2021). Exercise and Urtica dioica extract ameliorate hippocampal insulin signaling, oxidative stress, neuroinflammation, and cognitive function in STZ-induced diabetic rats. Biomedicine & Pharmacotherapy, 139, 111577.
Rao, S.M., & Sarkar, A. (2017). Beneficial effects of exercise on cognitive decline in old age. Indian Journal of Gerontology, 31(4), 423-429.
Rissardi, G.D.G.L., Cipullo, J.P., Moreira, G.C., Ciorlia, L.A.S., Cesarino, C.B., Giollo, L.T., ... & Vilela-Martin, J.F. (2018). Prevalence of physical inactivity and its effects on blood pressure and metabolic parameters in a Brazilian urban population. International Journal of Cardiovascular Sciences, 31, 594-602.
Salehi, I., Farajnia, S., Mohammadi, M., & Sabouri, G.M. (2010). The pattern of brain-derived neurotrophic factor gene expression in the hippocampus of diabetic rats. Irainian Journal of Basic Medical Sciences,13(3), 146-153. [In Persian]
Scopel, D., Fochesatto, C., Cimarosti, H., Rabbo, M., Belló-Klein, A., Salbego, C., ... & Siqueira, I.R. (2006). Exercise intensity influences cell injury in rat hippocampal slices exposed to oxygen and glucose deprivation. Brain Research Bulletin, 71(1-3), 155-159.
Seifert, T., Brassard, P., Wissenberg, M., Rasmussen, P., Nordby, P., Stallknecht, B., ... & Secher, N.H. (2010). Endurance training enhances BDNF release from the human brain. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 298(2), 372-377.
Soleimani, H., Talebi-Garakani, E., & Safarzade, A. (2018). The effect of endurance training and whey protein consumption on levels of antioxidant enzymes and oxidative stress in the heart muscle of rats fed a high-fat diet. Iranian Journal of Nutrition Sciences & Food Technology, 13(2), 1-10. [In Persian]
Sussman, M.A., Sakhi, S., Tocco, G., Najm, I., Baudry, M., Kedes, L., & Schreiber, S.S. (1994). Neural tropomodulin: developmental expression and effect of seizure activity. Developmental Brain Research, 80(1-2), 45-53.
Taherabadi, S.J., Rahmati, M., Mirnasuri, R., & Kazemi, A. (2019). Effect of exercise training on Tropomodulin-2 gene expression in cerebellum of diabetic rats. Iranian Journal of Diabetes and Obesity, 11(1), 28-37. [In Persian]
Thomason, E.J., Escalante, M., Osterhout, D.J., & Fuss, B. (2020). The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia, 68(7), 1329-1346.
Vecchio, L.M., Meng, Y., Xhima, K., Lipsman, N., Hamani, C., & Aubert, I. (2018). The neuroprotective effects of exercise: maintaining a healthy brain throughout aging. Brain Plasticity, 4(1), 17-52.
Vizzi, L., Padua, E., D’Amico, A.G., Tancredi, V., D’Arcangelo, G., Cariati, I., ... & Montorsi, M. (2020). Beneficial effects of physical activity on subjects with neurodegenerative disease. Journal of Functional Morphology and Kinesiology, 5(4), 94.
Yamashiro, S., Speicher, K.D., Speicher, D.W., & Fowler, V.M. (2010). Mammalian tropomodulins nucleate actin polymerization via their actin monomer binding and filament pointed end-capping activities. Journal of Biological Chemistry, 285(43), 33265-33280.
Yang, J., Czech, T., Felizardo, M., Baumgartner, C., & Lubec, G. (2006). Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids, 30(4), 477-493.
Zhao, J.L., Jiang, W.T., Wang, X., Cai, Z.D., Liu, Z.H., & Liu, G.R. (2020). Exercise, brain plasticity, and depression. CNS Neuroscience & Therapeutics, 26(9), 885-895.