نوع مقاله : مقاله پژوهشی
نویسندگان
1 دکتری فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه مازندران، بابلسر، ایران
2 استاد فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه مازندران، بابلسر، ایران
چکیده
زمینه و هدف: برخی از سایتوکاینها بهعنوان عوامل پیشبینی خطر بیماریهای قلبی- عروقی معرفی گردیدهاند. هدف از این مطالعه تعیین اثر 8 هفته تمرین تداومی و تناوبی بر سطوح سرمی اینترلوکین- 6 (IL-6)، عامل نکروز تومور-آلفا (TNF-α) و پروتئین واکنشی C (hs-CRP) با حساسیت بالا در زنان بسکتبالیست بود. روش تحقیق: تعداد 38 نفر زن بسکتبالیست سالم بهصورت داوطلبانه در این مطالعه شرکت کردند و بهطور تصادفی به سه گروه تمرین تداومی، تمرین تناوبی و کنترل تقسیم شدند. خونگیری در دو مرحله پیش و پسآزمون و پس از 12 ساعت ناشتایی صورت گرفت. تمرینات تداومی و تناوبی به مدت 8 هفته، هر هفته 3 جلسه به ترتیب با شدت 55% تا 70% حداکثر ضربان قلب افزایش یافت و تمرین تناوبی با شدت 60% تا 75% حـداکثر ضـربان قلـب اجـرا شد. تجزیه و تحلیل دادهها با استفاده از نرمافزار آماری SPSS نسخه 16 و با استفاده از آزمون آنوای یک طرفه و آزمون تعقیبی توکی انجام شد. یافتهها: هشت هفته تمرین تداومی و تناوبی،IL-6 (به ترتیب با 04/0>p و0/03>p)،TNF-α (به ترتیب با 0/03>p و 0/01>p) وhs-CRP (به ترتیب با 04/0>p و 009/0>p) را بهطور معنیداری کاهش دادند. به علاوه، تمرینـات تناوبـی در مقـابـل تمرینـات تداومی منجـر به کاهـش بیشتـر سطـوح IL-6 (20% در مقابل 19/13%؛ 03/0>p)، TNF-α(12/42% در مقـابـل 31/29%؛ 02/0>p) وhs-CRP (17/52% در مقـابل 17/21%؛01/0>p) گردیدند. نتیجهگیری: هر دو نوع تمرین تداومی و تناوبی سطوح سایتوکینهای التهابی را بهطور معنیداری کاهش دادند؛ اما تاثیر تمرینات تناوبی در کنترل این عوامل خطرساز بیماریهای قلبی- عروقی بیشتر بود.
کلیدواژهها
عنوان مقاله [English]
The effect of the cumulative doses of doxorubicin on voluntary physical activity distance in active aging model rats
نویسندگان [English]
- Ahmad Parsaeifar 1
- Vliollah Dabidi Roshan 2
1 Ph.D student of exercise physiology- Mazandaran university- Babolsar
2 Full Professor of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran
چکیده [English]
Background and Aim: Some cytokines are introduced as the predictors of cardiovascular disease risk factors. The aim of this study was to investigate the effect of 8 weeks of aerobic and interval training on serum TNF-ɑ, IL-6 and hs-CRP levels in female basketball players. Materials and Methods: Thirty eight healthy female basketball players voluntarily participated in this study, and further they randomly divided into three groups including continuous, interval and control groups. Blood samples were collected in both pre and post-test after 12 hours of fasting. Continuous and interval training were performed 3 times per week for eight weeks. Results: Eight weeks of continuous and interval training significantly reduced serum IL-6, TNF-ɑ and hs-CRP levels (p<0.05); while these variables had no significant effect in the control group (p>0.05). Moreover, significant difference were found for IL-6 levels between continuous and control group (p=0.005). The same result also were found for TNF-α levels between interval and control groups (p=0.001) as well as also between continuous training and control group (p=0.03). The mean changes of hs-CRP showed a significant difference between interval and control group (p=0.0001) and also between interval and continuous training group (p=0.01). In this way, Interval training versus aerobic training led to further decrease in levels of IL-6 (20% vs. 13.19%), TNF-α (42.12% vs 29.31%) and hs-CRP (52.17% vs 21.17%), respectively. Conclusion: Both of aerobic and interval training during eight weeks could significantly decreased inflammatory cytokines levels, moreover, interval training made the most changes in these cytokines. Therefore, continuous and interval training are recommended to prevent and control cardiovascular disease risk factors.
کلیدواژهها [English]
- Doxorubicin
- Aging
- voluntary physical activity
Alimoradi, H., Barzegar-Fallah, A., Hassanzadeh, G., Mohammadi-Rick, S., Asadi, F., Delfan, B., … & Dehpour, A. R.
(2012). The cardioprotective effects of an antiemetic drug, tropisetron, on cardiomyopathy related to doxorubicin. Cardiovascular Toxicology, 12(4), 318-325.
Bredahl, E. C., Pfannenstiel, K. B., Quinn, C. J., Hayward, R., & Hydock, D. S. ( 2016). Effects of exercise
on doxorubicin-Induced skeletal muscle dysfunction. Medicine and Science in Sports and Exercise, 48(8),
1468-73.
Cullu, E., Ozkan, I., Culhaci, N., & Alparslan, B. (2005). A comparison of the effect of doxorubicin and phenol on the
skeletal muscle. May doxorubicin be a new alternative treatment agent for spasticity? Journal of Pediatric Orthopaedics B, 14(2), 134-138.
Evans, W. J., & Lambert, C. P. (2007). Physiological basis of fatigue. American Journal of Physical Medicine & Rehabilitation, 86(1), S29-S46.
Evans, W. J. (2010). Skeletal muscle loss: cachexia, sarcopenia, and inactivity. The American Journal of Clinical Nutrition, 91(4), 1123S-1127S.
Janet, C., Barbee, R., Bielitzki, J., Clayton, L., Donovan, J., Hendriksen, C. F. M., ... & Quimby, F. W. (2011). Guide for
the care and use of laboratory animals. The National Academic Press, Washington DC, 8, 220.
Ghibu, S., Delemasure, S., Richard, C., Guilland, J. C., Martin, L., Gambert, S., … & Vergely, C. (2012). General oxidative
stress during doxorubicin-induced cardiotoxicity in rats: absence of cardioprotection and low antioxidant efficiency of
alpha-lipoic acid. Biochimie, 94(4), 932-939.
Gilliam, L. A., Ferreira, L. F., Bruton, J. D., Moylan, J. S., Westerblad, H., Clair, D. K. S., & Reid, M. B. (2009). Doxorubicin acts through tumor necrosis factor receptor subtype 1 to cause dysfunction of murine skeletal muscle. Journal of Applied Physiology, 107(6), 1935-1942.
Gilliam, L. A., Fisher-Wellman, K. H., Lin, C. T., Maples, J. M., Cathey, B. L., & Neufer, P. D. (2013). The anticancer agent
doxorubicin disrupts mitochondrial energy metabolism and redox balance in skeletal muscle. Free Radical Biology and
Medicine, 65, 988-996.
Gilliam, L. A., Moylan, J. S., Ann Callahan, L., Sumandea, M. P., & Reid, M. B. (2011). Doxorubicin causes diaphragm
weakness in murine models of cancer chemotherapy. Muscle & Nerve, 43(1), 94-102.
Gilliam, L. A., & St. Clair, D. K. (2011). Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of
oxidative stress. Antioxidants & Redox Signaling, 15(9), 2543-2563.
Glaspy, J. (2001). Anemia and fatigue in cancer patients. Cancer, 92(S6), 1719-1724.
Grov, E. K., Fosså, S. D., & Dahl, A. A. (2010). Activity of daily living problems in older cancer survivors: a population-based controlled study. Health & Social Care in the Community, 18(4), 396-406.
Hayward, R., Lien, C. Y., Jensen, B. T., Hydock, D. S., & Schneider, C. M. (2012). Exercise training mitigates anthracyclineinduced chronic cardiotoxicity in a juvenile rat model. Pediatric Blood & Cancer, 59(1), 149-154.
Hydock, D. S., Lien, C. Y., Jensen, B. T., Parry, T. L., Schneider, C. M., & Hayward, R. (2012). Rehabilitative exercise in a
rat model of doxorubicin cardiotoxicity. Experimental Biology and Medicine, 237(12), 1483-1492.
Hydock, D. S., Wonders, K. Y., Schneider, C. M., & Hayward, R. (2009). Voluntary wheel running in rats
receiving doxorubicin: effects on running activity and cardiac myosin heavy chain. Anticancer Research, 29(11),
4401- 4407.
Kavazis, A. N., Smuder, A. J., & Powers, S. K. (2014). Effects of short-term endurance exercise training on
acute doxorubicin-induced FoxO transcription in cardiac and skeletal muscle. Journal of Applied Physiology,
117(3), 223-230.
Khawli, F., & Reid, M. B. (1994). N-acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in
vitro. Journal of Applied Physiology, 77(1), 317-324.
Lambertucci, R. H., Levada-Pires, A. C., Rossoni, L. V., Curi, R., & Pithon-Curi, T. C. (2007). Effects of aerobic exercise
training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mechanisms of
Ageing and Development, 128(3), 267-275.
Iop, A., Manfredi, A., & Bonura, S. (2004). Fatigue in cancer patients receiving chemotherapy: an analysis of published
studies. Annals of Oncology, 15(5), 712-720.
Lee, J., Cho, J. Y., & Kim, W. K. (2014). Anti-inflammation effect of exercise and Korean red ginseng in aging model
rats with diet-induced atherosclerosis. Nutrition Research and Practice, 8(3), 284-291.
Moopanar, T. R., & Allen, D. G. (2005). Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse
skeletal muscle at 37 C. The Journal of Physiology, 564(1), 189-199.
Nishiguchi, S., Yamada, M., Kajiwara, Y., Sonoda, T., Yoshimura, K., Kayama, H., … & Aoyama, T. (2014). Effect of
physical activity at midlife on skeletal muscle mass in old age in community-dwelling older women: A cross-sectional
study. Journal of Clinical Gerontology and Geriatrics, 5(1), 18-22.
Rolland, Y., Czerwinski, S., Van Kan, G. A., Morley, J. E., Cesari, M., Onder, G., ... & Chumlea, W. M. C. (2008). Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. The Journal of Nutrition Health and Aging, 12(7), 433-450.
Ryall, J. G., Schertzer, J. D., & Lynch, G. S. (2008). Cellular and molecular mechanisms underlying age-related skeletal
muscle wasting and weakness. Biogerontology, 9(4), 213-228.
Sarvazyan, N. (1996). Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. American
Journal of Physiology-Heart and Circulatory Physiology, 271(5), H2079-H2085.
Schwartz, A. L. (2000). Daily fatigue patterns and effect of exercise in women with breast cancer. Cancer Practice, 8(1), 16-24.
Smuder, A. J., Kavazis, A. N., Min, K., & Powers, S. K. (2011). Exercise protects against doxorubicin-induced markers
of autophagy signaling in skeletal muscle. Journal of Applied Physiology, 111(4), 1190-1198.
Stricker, C. T., Drake, D., Hoyer, K. A., & Mock, V. (2004). Evidence-based practice for fatigue management in adults
with cancer: exercise as an intervention. Paper Presented at the Oncology Nursing Forum, 31(5), 963-76.
Van Norren, K., Van Helvoort, A., Argiles, J. M., Van Tuijl, S., Arts, K., Gorselink, M., ... & Van Der Beek, E. M. (2009).
Direct effects of doxorubicin on skeletal muscle contribute to fatigue. British Journal of Cancer, 100(2), 311.