اثر تمرین هوازی و مکمل‌دهی مایتوکیو (MitoQ) بر بیان ژن‌های OPA1 و FIS1 درگیر در مسیر دینامیک میتوکندریایی بافت میوکارد رت‌های نر پیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزش، گروه فیزیولوژی ورزشی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار گروه تربیت بدنی و علوم ورزشی، واحد دزفول، دانشگاه آزاد اسلامی، دزفول، ایران

3 استادیار گروه تربیت بدنی و علوم ورزشی، واحد خدابنده، دانشگاه آزاد اسلامی، خدابنده، ایران.

چکیده

زمینه و هدف: یکی از مشکلات در بیشتر کشورهای جهان، مسئله پیری جمعیت و پیامدهای ناشی از آن در بروز بیماری‌های قلبی است. هدف از مطالعه حاضر، بررسی تاثیر تمرین هوازی و مکمل‌دهی مایتوکیو بر عوامل درگیر در مسیر سیگنالینگ دینامیک میتوکندریایی شامل اپتیک آتروفی-۱ (OPA1) و پروتئین فیژن میتوکندریایی-1 (FIS1) در بافت قلب موش‌های پیر نر است. روش تحقیق: در مطالعه تجربی حاضر، تعداد ۲۸ سر موش صحرایی نر پیر نژاد ویستار به‌‌صورت تصادفی در چهار گروه هفت‌تایی شامل کنترل، تمرین هوازی، مکمل مایتوکیو، و تمرین هوازی+‌مکمل مایتوکیو تقسیم شدند. حیوانات پس از آشناسازی با محیط به مدت هشت هفته (پنج روز در هفته) تمرین هوازی با شدت ۷۰ درصد سرعت بیشینه را انجام دادند. مکمل‌دهی مایتوکیو به مدت هشت هفته به صورت محلول در آب خوراکی با غلظت ۲۵۰ میکرومولار انجام شد. برای ارزیابی متغیرها در بافت قلب از روش Real-time PCR استفاده گردید. آنالیز آماری داده‌ها با استفاده از آزمون تحلیل واریانس دو راهه و آزمون تعقیبی توکی در سطح معنی‌‌داری ۰۵/۰>p انجام گردید. یافته ها: تمرین هوازی به‌‌‌طور معنی‌‌داری بیان ژن FIS1 را در بافت میوکارد کاهش (۰۰۶/۰=p) و مکمل مایتوکیو میزان بیان ژن OPA1 را در بافت قلب موش‌های پیر افزایش داد (۰۴/p=0)؛ اما بر بیان ژن FIS1 تاثیر معنی‌‌داری نداشت (۰۶/p=0). از طرفی، ترکیب مایتوکیو و تمرین، بیان ژن دو متغیر FIS1 و OPA1 را نسبت به مکمل مایتوکیو، به‌‌طور معنی‌‌داری کاهش داد (۰۲/p=0). نتیجه گیری: مکمل مایتوکیو در نقش یک آنتی‌‌اکسیدان پیشرفته احتمالاً می‌تواند در دینامیک میتوکندریایی عضله قلبی پیر نقش داشته باشد و بیان ژن فرآیند همجوشی را بهبود ‌‌بخشد. با این حال، ترکیب تمرین هوازی و مایتوکیو می‌‌تواند فرآیند همجوشی و شکافت میتوکندریایی را تعدیل کند.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of aerobic training and MitoQ supplementation on the gene expression of OPA1 and FIS1 in myocardial mitochondrial dynamic pathway in old male rats

نویسندگان [English]

  • Sadollah Salarmohammadi 1
  • Elham Farhadfar 2
  • Zahra Sarlak 3
1 PhD. Student at Department of Sport Physiology, CT. C., Islamic Azad University, Tehran, Iran
2 Assistant professor at Department of Physical Education and sport Science, Dez. C., Islamic Azad University, Dezful, Iran.
3 Assistant professor at Department of Physical Education and Sport Sciences, Khod.C., Islamic Azad University, Khodabandeh, Iran.
چکیده [English]

Extended abstract
Background and Aim: Aging is a complex biological process characterized by progressive functional decline, ultimately reducing quality of life. Cardiovascular diseases and their related mortality are markedly more prevalent in older adults, with aging recognized as a major risk factor for cardiovascular dysfunction. Mitochondrial impairment has been identified as a critical contributor to age-related cardiac deterioration. Proteins regulating mitochondrial dynamics, such as optic atrophy-1 (OPA1) and mitochondrial fission protein-1 (FIS1), play a key role in maintaining mitochondrial integrity and cellular homeostasis. Aerobic exercise training and MitoQ—an antioxidant targeting mitochondrial oxidative stress—have both been proposed as non-pharmacological interventions capable of improving mitochondrial function in aging. Therefore, the present study aimed to investigate the effects of aerobic exercise training and MitoQ supplementation on OPA1 and FIS1 expression in the cardiac tissue of aged male rats.
Materials and methods: In this experimental study, 28 aged male Wistar rats were obtained from the Kerman physiology research center. After a one-week acclimation period under controlled laboratory conditions, animals were randomly assigned into four groups (n=7 per group): control, aerobic exercise, MitoQ supplementation, and combined aerobic exercise+MitoQ supplementation.
To determine training intensity, maximal oxygen consumption (VO₂max) was estimated based on maximal running speed (Vmax). Aerobic exercise training was performed for eight weeks, with session intensity adjusted according to the established relationship between treadmill speed and calculated VO₂max. Rats in the control and MitoQ groups did not perform training but were placed on the treadmill without running during the training sessions to equalize environmental stress exposure. MitoQ was administered only to the designated MitoQ (250µm) and combined intervention groups.
At the end of the intervention period, cardiac tissue samples were collected, and gene expression levels of OPA1 and FIS1 were quantified using the 2^-ΔΔCt method, with 18S rRNA serving as the internal reference gene. The data was analyzed statistically using a two-way ANOVA test.
Results: Expression of the FIS1 gene was up-regulated in the cardiac tissue of aged male rats. Post-hoc analysis revealed that aerobic exercise significantly reduced FIS1 expression compared to the control group (p=0.006). In addition, the combined intervention of aerobic exercise and MitoQ supplementation significantly decreased the expression of both FIS1 and OPA1 compared to the MitoQ-only group (p=0.02). MitoQ supplementation alone significantly increased OPA1 gene expression in the cardiac tissue compared to the control group (p=0.04). A significant reduction in body weight was observed beginning in week 6 in both the aerobic exercise group and the combined aerobic exercise+MitoQ group (p=0.001).
Conclusion: The findings of this study indicate that the antioxidant MitoQ supplementation influences mitochondrial fission and thereby alters mitochondrial dynamics in the cardiac tissue of aged rats. Furthermore, when combined with aerobic exercise, a modulatory effect on these mitochondrial processes was observed. This interaction may be attributed to exercise-induced oxidative stress, through which exercise appears to modify the impact of MitoQ on mitochondrial fission and fusion mechanisms in the heart. Collectively, these results highlight the potential of integrating antioxidant therapy with aerobic training to regulate age-associated mitochondrial alterations in cardiac tissue.
Ethical considerations: The present project has a code of ethics for working with laboratory animals, number IR-KHU.KRC.1000.250, from the Ethics Committee of the Institute of Movement Sciences, Kharazmi University, IRAN.
Compliance with ethical guidelines: In the present project, all work with laboratory animals was carried out according to the ethical charter, and the necessary standards were observed in the project.
Funding: This article is an excerpt from a doctoral dissertation by a student at Islamic Azad University, Central Tehran Branch.
Conflict of interest: There is no conflict of interest between authors.
 

کلیدواژه‌ها [English]

  • Aerobic exercise
  • MitoQ supplement
  • Myocardial tissue
  • Mitochondrial biogenesis
1. Leidal AM, Levine B, Debnath J. Autophagy and the cell biology of age-related disease. Nature Cell Biology. 2018;20(12):1338-48.  http://doi.org/10.1038/s41556-018-0235-8.
2. Scott AJ, Ellison M, Sinclair DA. The economic value of targeting aging. Nature Aging. 2021;1(7):616-23. http://doi.org/10.1038/s43587-021-00080-0
3. Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, et al. Autophagy in healthy aging and disease. Nature Aging. 2021;1(8):634-50. http://doi.org/10.1038/s43587-021-00098-4
4. Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biology. 2019;20:1-24. http://doi.org/10.1186/s13059-019-1824-y
5. García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529(7584):37-42. http://doi.org/10.1038/nature16187
6. Pouikli A, Parekh S, Maleszewska M, Nikopoulou C, Baghdadi M, Tripodi I, et al. Chromatin remodeling due to degradation of citrate carrier impairs osteogenesis of aged mesenchymal stem cells. Nature Aging. 2021;1(9):810-25. http://doi.org/10.1038/s43587-021-00105-8
7. Ortiz GG, Moisés FPP, Mireles-Ramírez M, Flores-Alvarado LJ, González-Usigli H, Sánchez-González VJ, et al. Oxidative stress: love and hate history in central nervous system. Advances in Protein Chemistry and Structural Biology. 2017;108:1-31. http://doi.org/10.1016/bs.apcsb.2017.01.003
8. Sun J, Zhang L, Zhang J, Ran R, Shao Y, Li J, et al. Protective effects of ginsenoside Rg1 on splenocytes and thymocytes in an aging rat model induced by d-galactose. International Immunopharmacology. 2018;58:94-102. http://doi.org/10.1016/j.intimp.2018.03.017
9. Li Y, Lin R, Peng X, Wang X, Liu X, Li L, et al. The role of mitochondrial quality control in anthracycline-induced cardiotoxicity: from bench to bedside. Oxidative Medicine and Cellular Longevity. 2022. http://doi.org/10.1155/2022/3659278
10. Tahrir FG, Langford D, Amini S, Mohseni Ahooyi T, Khalili K. Mitochondrial quality control in cardiac cells: Mechanisms and role in cardiac cell injury and disease. Journal of Cellular Physiology. 2019;234(6):8122-33. http://doi.org/10.1002/jcp.27597
11. Maneechote C, Palee S, Chattipakorn SC, Chattipakorn N. Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. Journal of Cellular and Molecular Medicine. 2017;21(11):2643-53. http://doi.org/10.1111/jcmm.13330
12. Cao K, Riley JS, Heilig R, Montes-Gómez AE, Vringer E, Berthenet K, et al. Mitochondrial dynamics regulate genome stability via control of caspase-dependent DNA damage. Developmental Cell. 2022;57(10):1211-25. e6. http://doi.org/10.1016/j.devcel.2022.03.019
13. Sun C, Liu X, Di C, Wang Z, Mi X, Liu Y, et al. MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential. Autophagy. 2017;13(4):730-8. http://doi.org/10.1080/15548627.2017.1280219
14. Xiao L, Xu X, Zhang F, Wang M, Xu Y, Tang D, et al. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biology. 2017;11:297-311. http://doi.org/10.1016/j.redox.2016.12.022
15. Chun OK, Floegel A, Chung S-J, Chung CE, Song WO, Koo SI. Estimation of antioxidant intakes from diet and supplements in US adults. The Journal of Nutrition. 2010;140(2):317-24. http://doi.org/10.3945/jn.109.114413
16. Williamson J, Hughes CM, Cobley JN, Davison GW. The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Redox Biology. 2020;36:101673.  http://doi.org/10.1016/j.redox.2020.101673
17. Rouholamini FS, Aminaei M, Aminizadeh S. The effect of eight weeks of endurance training and MitoQ supplementation on antioxidant capacity and the expression of sestrin-2 and AMPK in cardiac tissue of aged rats. Experimental Gerontology. 2024;196:112572.  http://doi.org/10.1016/j.exger.2024.112572
18. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, et al. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care. 2008;31(2):369-71. http://doi.org/10.2337/dc07-1795
19. Bangsbo J, Blackwell J, Boraxbekk C-J, Caserotti P, Dela F, Evans AB, et al. Copenhagen consensus statement 2019: physical activity and ageing. British Journal of Sports Medicine. 2019;53(14):856-8. http://doi.org/10.1136/bjsports-2018-100451
20. Kayacan Y, Çetinkaya A, Yazar H, Makaracı Y. Oxidative stress response to different exercise intensity with an automated assay: thiol/disulphide homeostasis. Archives of Physiology and Biochemistry. 2021;127(6):504-8. http://doi.org/10.1080/13813455.2019.1651868
21. Hernandez‐Resendiz S, Prunier F, Girao H, Dorn G, Hausenloy DJ, Action ECC. Targeting mitochondrial fusion and fission proteins for cardioprotection. Journal of Cellular and Molecular Medicine. 2020;24(12):6571-85. http://doi.org/10.1111/jcmm.15384
22. Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062-5. http://doi.org/10.1126/science.1219855
23. Khalifa EA, Nabil Ahmed A, Hashem KS, Allah AG. Therapeutic effects of the combination of alpha‐lipoic acid (ala) and coenzyme Q10 (CoQ10) on cisplatin‐induced nephrotoxicity. International Journal of Inflammation. 2020;2020(1):5369797. http://doi.org/10.1155/2020/5369797
24. Feher J, Nemeth E, Nagy V, Lengyel G. The preventive role of coenzyme Q10 and other antioxidants in injuries caused by oxidative stress. Archives of Medical Science. 2007;3(4):305-14. http://doi.org/10.3390/nu14163265
25. Hosseini L, Vafaee MS, Badalzadeh R. Melatonin and nicotinamide mononucleotide attenuate myocardial ischemia/reperfusion injury via modulation of mitochondrial function and hemodynamic parameters in aged rats. Journal of Cardiovascular Pharmacology and Therapeutics. 2020;25(3):240-50. http://doi.org/10.1177/1074248419882002
26. Feillet-Coudray C, Fouret G, Ebabe Elle R, Rieusset J, Bonafos B, Chabi B, et al. The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol. Free Radical Research. 2014;48(10):1232-46. http://doi.org/10.3109/10715762.2014.945079
27. Yin X, Manczak M, Reddy PH. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington’s disease. Human Molecular Genetics. 2016;25(9):1739-53. http://doi.org/10.1093/hmg/ddw045
28. Goh KY, He L, Song J, Jinno M, Rogers AJ, Sethu P, et al. Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice. Redox Biology. 2019;21:101100. http://doi.org/10.1016/j.redox.2019.101100
29. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia‐reperfusion injury. The FASEB Journal. 2005;19(9):1088-95. http://doi.org/10.1096/fj.05-3718com
30. Rostamzadeh F, Najafipour H, Aminizadeh S, Jafari E. Therapeutic effects of the combination of moderate-intensity endurance training and MitoQ supplementation in rats with isoproterenol-induced myocardial injury: the role of mitochondrial fusion, fission, and mitophagy. Biomedicine & Pharmacotherapy. 2024;170:116020. http://doi.org/10.1016/j.biopha.2023.116020
31. Song M, Franco A, Fleischer JA, Zhang L, Dorn GW, 2nd. Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence. Cell Metabolism. 2017;26(6):872-83 e5. http://doi.org/10.1016/j.cmet.2017.09.023
32. Gioscia-Ryan RA, Battson ML, Cuevas LM, Eng JS, Murphy MP, Seals DR. Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. Journal of Applied Physiology. 2018;124(5):1194-202. http://doi.org/10.1152/japplphysiol.00670.2017
33. Ponti F, Santoro A, Mercatelli D, Gasperini C, Conte M, Martucci M, et al. Aging and Imaging Assessment of Body Composition: From Fat to Facts. Frontiers in Endocrinology. 2019;10:861. http://doi.org/10.3389/fendo.2019.00861
34. Masoumi-Ardakani Y, Najafipour H, Nasri HR, Aminizadeh S, Jafari S, Moflehi D. Effect of Combined Endurance Training and MitoQ on Cardiac Function and Serum Level of Antioxidants, NO, miR-126, and miR-27a in Hypertensive Individuals. BioMed Research International. 2022;2022:8720661. http://doi.org/10.1155/2022/8720661
35. Benito PJ, Lopez-Plaza B, Bermejo LM, Peinado AB, Cupeiro R, Butragueno J, et al. Strength plus endurance training and individualized diet reduce fat mass in overweight subjects: A randomized clinical trial. International Journal of Environmental Research and Public Health. 2020;17(7). http://doi.org/10.3390/ijerph17072596
36. Masoumi-Ardakani Y, Najafipour H, Nasri HR, Aminizadeh S, Jafari S, Moflehi D. Effect of combined endurance training and MitoQ on cardiac function and serum level of antioxidants, NO, miR‐126, and miR‐27a in hypertensive individuals. BioMed Research International. 2022;2022(1):8720661. http://doi.org/10.1155/2022/8720661
37. James DI, Parone PA, Mattenberger Y, Martinou J-C. hFis1, a novel component of the mammalian mitochondrial fission machinery. Journal of Biological Chemistry. 2003;278(38):36373-9. http://doi.org/10.1074/jbc.M303758200
38. Morciano G, Boncompagni C, Ramaccini D, Pedriali G, Bouhamida E, Tremoli E, et al. Comprehensive analysis of mitochondrial dynamics alterations in heart diseases. International Journal of Molecular Sciences. 2023;24(4):3414. http://doi.org/10.3390/ijms24043414
39. Yu R, Jin SB, Lendahl U, Nistér M, Zhao J. Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. The EMBO journal. 2019;38(8):e99748. http://doi.org/10.15252/embj.201899748