1. Leidal AM, Levine B, Debnath J. Autophagy and the cell biology of age-related disease. Nature Cell Biology. 2018;20(12):1338-48. http://doi.org/10.1038/s41556-018-0235-8.
2. Scott AJ, Ellison M, Sinclair DA. The economic value of targeting aging. Nature Aging. 2021;1(7):616-23. http://doi.org/10.1038/s43587-021-00080-0
3. Aman Y, Schmauck-Medina T, Hansen M, Morimoto RI, Simon AK, Bjedov I, et al. Autophagy in healthy aging and disease. Nature Aging. 2021;1(8):634-50. http://doi.org/10.1038/s43587-021-00098-4
4. Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biology. 2019;20:1-24. http://doi.org/10.1186/s13059-019-1824-y
5. García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529(7584):37-42. http://doi.org/10.1038/nature16187
6. Pouikli A, Parekh S, Maleszewska M, Nikopoulou C, Baghdadi M, Tripodi I, et al. Chromatin remodeling due to degradation of citrate carrier impairs osteogenesis of aged mesenchymal stem cells. Nature Aging. 2021;1(9):810-25. http://doi.org/10.1038/s43587-021-00105-8
7. Ortiz GG, Moisés FPP, Mireles-Ramírez M, Flores-Alvarado LJ, González-Usigli H, Sánchez-González VJ, et al. Oxidative stress: love and hate history in central nervous system. Advances in Protein Chemistry and Structural Biology. 2017;108:1-31. http://doi.org/10.1016/bs.apcsb.2017.01.003
8. Sun J, Zhang L, Zhang J, Ran R, Shao Y, Li J, et al. Protective effects of ginsenoside Rg1 on splenocytes and thymocytes in an aging rat model induced by d-galactose. International Immunopharmacology. 2018;58:94-102. http://doi.org/10.1016/j.intimp.2018.03.017
9. Li Y, Lin R, Peng X, Wang X, Liu X, Li L, et al. The role of mitochondrial quality control in anthracycline-induced cardiotoxicity: from bench to bedside. Oxidative Medicine and Cellular Longevity. 2022. http://doi.org/10.1155/2022/3659278
10. Tahrir FG, Langford D, Amini S, Mohseni Ahooyi T, Khalili K. Mitochondrial quality control in cardiac cells: Mechanisms and role in cardiac cell injury and disease. Journal of Cellular Physiology. 2019;234(6):8122-33. http://doi.org/10.1002/jcp.27597
11. Maneechote C, Palee S, Chattipakorn SC, Chattipakorn N. Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. Journal of Cellular and Molecular Medicine. 2017;21(11):2643-53. http://doi.org/10.1111/jcmm.13330
12. Cao K, Riley JS, Heilig R, Montes-Gómez AE, Vringer E, Berthenet K, et al. Mitochondrial dynamics regulate genome stability via control of caspase-dependent DNA damage. Developmental Cell. 2022;57(10):1211-25. e6. http://doi.org/10.1016/j.devcel.2022.03.019
13. Sun C, Liu X, Di C, Wang Z, Mi X, Liu Y, et al. MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential. Autophagy. 2017;13(4):730-8. http://doi.org/10.1080/15548627.2017.1280219
14. Xiao L, Xu X, Zhang F, Wang M, Xu Y, Tang D, et al. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biology. 2017;11:297-311. http://doi.org/10.1016/j.redox.2016.12.022
15. Chun OK, Floegel A, Chung S-J, Chung CE, Song WO, Koo SI. Estimation of antioxidant intakes from diet and supplements in US adults. The Journal of Nutrition. 2010;140(2):317-24. http://doi.org/10.3945/jn.109.114413
16. Williamson J, Hughes CM, Cobley JN, Davison GW. The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Redox Biology. 2020;36:101673. http://doi.org/10.1016/j.redox.2020.101673
17. Rouholamini FS, Aminaei M, Aminizadeh S. The effect of eight weeks of endurance training and MitoQ supplementation on antioxidant capacity and the expression of sestrin-2 and AMPK in cardiac tissue of aged rats. Experimental Gerontology. 2024;196:112572. http://doi.org/10.1016/j.exger.2024.112572
18. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, et al. Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care. 2008;31(2):369-71. http://doi.org/10.2337/dc07-1795
19. Bangsbo J, Blackwell J, Boraxbekk C-J, Caserotti P, Dela F, Evans AB, et al. Copenhagen consensus statement 2019: physical activity and ageing. British Journal of Sports Medicine. 2019;53(14):856-8. http://doi.org/10.1136/bjsports-2018-100451
20. Kayacan Y, Çetinkaya A, Yazar H, Makaracı Y. Oxidative stress response to different exercise intensity with an automated assay: thiol/disulphide homeostasis. Archives of Physiology and Biochemistry. 2021;127(6):504-8. http://doi.org/10.1080/13813455.2019.1651868
21. Hernandez‐Resendiz S, Prunier F, Girao H, Dorn G, Hausenloy DJ, Action ECC. Targeting mitochondrial fusion and fission proteins for cardioprotection. Journal of Cellular and Molecular Medicine. 2020;24(12):6571-85. http://doi.org/10.1111/jcmm.15384
22. Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062-5. http://doi.org/10.1126/science.1219855
23. Khalifa EA, Nabil Ahmed A, Hashem KS, Allah AG. Therapeutic effects of the combination of alpha‐lipoic acid (ala) and coenzyme Q10 (CoQ10) on cisplatin‐induced nephrotoxicity. International Journal of Inflammation. 2020;2020(1):5369797. http://doi.org/10.1155/2020/5369797
24. Feher J, Nemeth E, Nagy V, Lengyel G. The preventive role of coenzyme Q10 and other antioxidants in injuries caused by oxidative stress. Archives of Medical Science. 2007;3(4):305-14. http://doi.org/10.3390/nu14163265
25. Hosseini L, Vafaee MS, Badalzadeh R. Melatonin and nicotinamide mononucleotide attenuate myocardial ischemia/reperfusion injury via modulation of mitochondrial function and hemodynamic parameters in aged rats. Journal of Cardiovascular Pharmacology and Therapeutics. 2020;25(3):240-50. http://doi.org/10.1177/1074248419882002
26. Feillet-Coudray C, Fouret G, Ebabe Elle R, Rieusset J, Bonafos B, Chabi B, et al. The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol. Free Radical Research. 2014;48(10):1232-46. http://doi.org/10.3109/10715762.2014.945079
27. Yin X, Manczak M, Reddy PH. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington’s disease. Human Molecular Genetics. 2016;25(9):1739-53. http://doi.org/10.1093/hmg/ddw045
28. Goh KY, He L, Song J, Jinno M, Rogers AJ, Sethu P, et al. Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice. Redox Biology. 2019;21:101100. http://doi.org/10.1016/j.redox.2019.101100
29. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia‐reperfusion injury. The FASEB Journal. 2005;19(9):1088-95. http://doi.org/10.1096/fj.05-3718com
30. Rostamzadeh F, Najafipour H, Aminizadeh S, Jafari E. Therapeutic effects of the combination of moderate-intensity endurance training and MitoQ supplementation in rats with isoproterenol-induced myocardial injury: the role of mitochondrial fusion, fission, and mitophagy. Biomedicine & Pharmacotherapy. 2024;170:116020. http://doi.org/10.1016/j.biopha.2023.116020
31. Song M, Franco A, Fleischer JA, Zhang L, Dorn GW, 2nd. Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence. Cell Metabolism. 2017;26(6):872-83 e5. http://doi.org/10.1016/j.cmet.2017.09.023
32. Gioscia-Ryan RA, Battson ML, Cuevas LM, Eng JS, Murphy MP, Seals DR. Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. Journal of Applied Physiology. 2018;124(5):1194-202. http://doi.org/10.1152/japplphysiol.00670.2017
33. Ponti F, Santoro A, Mercatelli D, Gasperini C, Conte M, Martucci M, et al. Aging and Imaging Assessment of Body Composition: From Fat to Facts. Frontiers in Endocrinology. 2019;10:861. http://doi.org/10.3389/fendo.2019.00861
34. Masoumi-Ardakani Y, Najafipour H, Nasri HR, Aminizadeh S, Jafari S, Moflehi D. Effect of Combined Endurance Training and MitoQ on Cardiac Function and Serum Level of Antioxidants, NO, miR-126, and miR-27a in Hypertensive Individuals. BioMed Research International. 2022;2022:8720661. http://doi.org/10.1155/2022/8720661
35. Benito PJ, Lopez-Plaza B, Bermejo LM, Peinado AB, Cupeiro R, Butragueno J, et al. Strength plus endurance training and individualized diet reduce fat mass in overweight subjects: A randomized clinical trial. International Journal of Environmental Research and Public Health. 2020;17(7). http://doi.org/10.3390/ijerph17072596
36. Masoumi-Ardakani Y, Najafipour H, Nasri HR, Aminizadeh S, Jafari S, Moflehi D. Effect of combined endurance training and MitoQ on cardiac function and serum level of antioxidants, NO, miR‐126, and miR‐27a in hypertensive individuals. BioMed Research International. 2022;2022(1):8720661. http://doi.org/10.1155/2022/8720661
37. James DI, Parone PA, Mattenberger Y, Martinou J-C. hFis1, a novel component of the mammalian mitochondrial fission machinery. Journal of Biological Chemistry. 2003;278(38):36373-9. http://doi.org/10.1074/jbc.M303758200
38. Morciano G, Boncompagni C, Ramaccini D, Pedriali G, Bouhamida E, Tremoli E, et al. Comprehensive analysis of mitochondrial dynamics alterations in heart diseases. International Journal of Molecular Sciences. 2023;24(4):3414. http://doi.org/10.3390/ijms24043414
39. Yu R, Jin SB, Lendahl U, Nistér M, Zhao J. Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. The EMBO journal. 2019;38(8):e99748. http://doi.org/10.15252/embj.201899748