تاثیر همزمان مکمل یاری کرم آرد با تمرین هوازی بر بیان برخی ژن‌های میتوکندریایی در عضله نعلی موش‌های صحرایی مبتلا به کبد چرب غیرالکلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزش، دانشکده فرهنگ و ارتباطات واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.

2 دانشیار، گروه فیزیولوژی ورزش، دانشکده فرهنگ و ارتباطات واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.

3 استادیار، گروه فیزیولوژی ورزش، دانشکده فرهنگ و ارتباطات واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.

چکیده

زمینه و هدف: در این تحقیق تاثیر همزمان مکمل پروتئینی کرم آرد  با تمرین هوازی بر بیان ژن‌های دخیل در بیوژنز میتوکندریایی شامل گیرنده فعال شده توسط پراکسی زوم گاما هم‌فعال کننده یک-آلفا (PGC1α)، پروتئین جفت نشده-یک (UCP1)،  پروتئین‌های میتوفیوژن (Mfn1) و پروتئین-یک وابسته به دینامین (Drp1) در عضله نعلی موش‌های صحرایی مبتلا به کبد چرب غیرالکلی (NAFLD) بررسی گردید. روش تحقیق: در این مطالعه تجربی، 25 سر موش صحرایی نر نژاد ویستار به پنج گروه مساوی شامل گروه سالم، بیمار، بیمار+ مکمل، بیمار+ تمرین، و بیمار+ مکمل+ تمرین تقسیم شدند. گروه بیمار با رژیم غذایی پرچرب و کلسترول دچار NAFLD شدند. تمرین هوازی تناوبی شامل دویدن روی نوارگردان به مدت 30 دقیقه و پنج روز در هفته همراه با اضافه بار تدریجی، به مدت هشت هفته انجام شد. گاواژ مکمل کرم آرد با دوز 20 میلی‌گرم/کیلوگرم وزن بدن مشابه با روزهای ورزش صورت گرفت. در نهایت، 48 ساعت پس از آخرین جلسه تمرین، حیوانات قربانی شدند و سنجش بیان ژن‌های PGC1α، UCP1، Mfn1 و Drp1 در عضله نعلی با روش Real-Time PCR صورت گرفت. داده‌های تحقیق با استفاده از آزمون‌های آماری t مستقل و تحلیل واریانس دو عاملی در سطح معنی‌داری 05/0≥p تجزیه‌وتحلیل شدند. یافته‌ها: ابتلا‌ به NAFLD، بیان PGC1α، UCP1 و Mfn1 را کاهش و بیان Drp1 را در عضله افزایش داد (001/0=p). تمرین و مکمل کرم آرد هر کدام به تنهایی منجر به افزایش معنی‌دار بیان PGC1α (001/0=p)، UCP1 (001/0=p) و Mfn1 (001/0=p) و کاهش معنی‌دار بیان Drp1 (001/0=p) در موش‌های مبتلا به NAFLD شدند و اثر تعاملی تمرین و مکمل فقط در افزایش Mfn1 (001/0=p) معنی‌دار بود. نتیجه‌گیری: به نظر می‌رسد تمرین هوازی و مکمل کرم آرد  هر کدام به تنهایی با ایجاد تغییرات مثبت در بیان برخی ژن‌های دخیل در بیوژنز میتوکندری و تعدیل متابولیسم چربی، احتمالا در بهبود وضعیت NAFLD موثر واقع شود.

کلیدواژه‌ها


عنوان مقاله [English]

Simultaneous effect of mealworm supplement with aerobic exercise on mitochondrial genes expression in the soleus muscle of rats with non-alcoholic fatty liver

نویسندگان [English]

  • Somayeh Payekari 1
  • Alireza Rahimi 2
  • Fariba Aghaei 3
  • Foad Feizollahi 3
1 PhD Student in Exercise Physiology, Department of Exercise Physiology , Faculty of Culture and Communication, Karaj Branch, Islamic Azad University, Karaj, Iran.
2 Associate Professor at Department of Exercise Physiology, Faculty of Culture and Communication, Karaj Branch, Islamic Azad University, Karaj, Iran.
3 Assistant Professor at Department of Exercise Physiology, Faculty of Culture and Communication, Karaj Branch, Islamic Azad University, Karaj, Iran.
چکیده [English]

Extended Abstract 
Background and Aim: Non-alcoholic fatty liver disease (NAFLD) is an acquired metabolic disorder characterized by the accumulation of triglycerides in the liver, resulting from causes other than alcohol consumption. Exercise has been shown to not only reduce liver inflammation but also enhances mitochondrial biogenesis, improving morphological dynamics and regeneration rates through biogenesis and mitophagy. In addition , insect-based supplements, such as mealworms, have demonstrated strong immunostimulatory, anticancer, antidiabetic, and antioxidant properties. This supplement, rich in protein, has been reported to exhibit anti-obesity effects by activating peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Furthermore, it has been shown to effectively reduce weight and fat mass by influencing the expression of genes involved in fat metabolism. Therefore, the present study aimed to investigate the combined effect of mealworm protein supplementation and aerobic exercise on the expression of genes associated with mitochondrial biogenesis—including PGC-1α, uncoupling protein 1 (UCP1), mitofusin 1 (Mfn1), and dynamin-related protein 1 (Drp1)—in the soleus muscle tissue of rats with NAFLD.
Materials and Methods: In this experimental study, 25 male Wistar rats were divided into five equal groups including: 1- healthy, 2- patient, 3- patient+supplement, 4- patient+exercise, 5- patient+supplement+exercise. The sick groups developed NAFLD with high fat and cholesterol diet. The exercise protocol consisted of interval endurance exercise was performed for eight weeks, involving treadmill running for 30 minutes per session, five days per week with gradual overload. Mealworm protein supplement was administered via oral gavage at a dose of 20 mg/kg body weight on the same days as exercise sessions.
Tissue sampling of the soleus muscle was performed 48 hours after the last exercise and supplement session. The animals were anesthetized with intraperitoneal injections of Ketamine and Xylazine, and the soleus muscle tissue was immediately collected. Each tissue sample was placed in a microtube containing liquid nitrogen and stored at -80°C until gene expression analysis. 
Total RNA was extracted using the RNX-Plus method, and RNA purity and concentration were determined by spectrophotometry and confirmed by Agarose gel electrophoresis. The mRNA sequences of target genes (PGC-1α, UCP1, Mfn1, and Drp1) were obtained from the NCBI database. Primer sequences were designed using AllelID software and validated for specificity using BLAST analysis.
Data were analyzed using independent t-tests and two-way ANOVA, with the significance level set at p≤ 0.05.
Results: The independent t-test results revealed that in the diseased group, the expression of PGC-1α, UCP1, and Mfn1 genes significantly decreased compared to the healthy group, while the expression of Drp1 significantly increased (p=0.0001). According to the two-way ANOVA (Table 1) and Bonferroni tests, aerobic exercise significantly increased the expression of PGC-1α (p=0.0001), UCP1 (p=0.0001), and Mfn1 (p=0.0001), while significantly decreased the expression of Drp1 (p=0.0001) in the soleus muscle tissue of rats with NAFLD. Additionally, statistical findings revealed that mealworm protein supplementation significantly increased the expression of UCP1 (p=0.0001), PGC-1α (p=0.0001), and Mfn1 (p=0.0001), while significantly decreased the expression of Drp1 (p=0.0001) in the soleus muscle tissue of rats with NAFLD. However, the two-way ANOVA (Table 1) and Bonferroni tests, showed that the combination of aerobic exercise and mealworm protein supplementation did not have a significant effect on the expression of UCP1 (p=0.53), PGC-1α (p=0.36), or Drp1 (p=0.88) in the soleus muscle tissue of rats with NAFLD. Nevertheless, the simultaneous intervention of aerobic exercise and mealworm protein supplementation significantly increased the expression of Mfn1 (p=0.0001) in the soleus muscle tissue of rats with NAFLD.
Conclusion: The findings of this study demonstrate that both intermittent aerobic exercise and mealworm protein supplementation independently led to a significant upregulation of key genes involved in mitochondrial biogenesis—namely PGC-1α, UCP1, and Mfn1—in the soleus muscle of rats with NAFLD. Concurrently, these interventions resulted in a marked downregulation of Drp1, a gene associated with excessive mitochondrial fission and cellular apoptosis. These gene expression changes reflect improved mitochondrial function, enhanced fatty acid oxidation capacity, and reduced oxidative stress in muscle tissue—all of which are critical factors in the management and potential reversal of NAFLD. Notably, the interaction effect between exercise and supplementation was significant only for Mfn1 expression, suggesting a synergistic role in promoting mitochondrial fusion and stabilizing mitochondrial membrane potential. This may contribute to reduced apoptosis and improved mitochondrial dynamics under pathological conditions. Given the pivotal roles of the investigated genes in lipid metabolism, metabolic flexibility, and cellular homeostasis, the results suggest that both aerobic exercise and mealworm protein supplementation represent promising non-pharmacological strategies for mitigating NAFLD. Furthermore, considering the antioxidant, anti-obesity, and metabolic regulatory properties of mealworm supplementation, along with the well-established benefits of aerobic exercise in enhancing mitochondrial performance and reducing inflammation, the combination of these two interventions may offer a novel and multifaceted therapeutic approach for metabolic disorders such as NAFLD. However, further research is recommended—particularly in advanced animal models and clinical trials involving individuals with obesity or type 2 diabetes who are at risk for NAFLD.
Hical Considerations: Ethical approval was obtained from the Ethics Committee of Islamic Azad University, Karaj Branch (Code: IR.IAU.K.REC.1403.029).
Funding: The costs of the study were borne by the researcher.
Conflict of Interest: No conflicts of interest declared.

کلیدواژه‌ها [English]

  • Aerobic exercise
  • Mealworm
  • Mitochondrial biogenesis
  • Fatty liver
1.  Neuschwander-Tetri BA. Non-alcoholic fatty liver disease. Bio Med Central Medicine. 2017;15:1-6.  https://doi.org/10.1186/s12916-017-0806-8 
2. Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQ, Portincasa P. Nonalcoholic fatty liver disease (NAFLD). Mitochondria as players and targets of therapies? International Journal of Molecular Sciences. 2021;22(10):5375.  https://doi.org/10.3390/ijms22105375 
3. Kang C, Ji LL. Role of PGC-1α in muscle function and aging. Journal of Sport and Health Science. 2013;2(2):81-6.  https://doi.org/10.1016/j.jshs.2013.03.005 
4. Léveillé M, Besse-Patin A, Jouvet N, Gunes A, Sczelecki S, Jeromson S, Khan NP, Baldwin C, Dumouchel A, Correia JC, Jannig PR. PGC-1α isoforms coordinate to balance hepatic metabolism and apoptosis in inflammatory environments. Molecular Metabolism. 2020;34:72-84.  https://doi.org/10.1101/703678 
5. Mills EL, Harmon C, Jedrychowski MP, Xiao H, Garrity R, Tran NV, Bradshaw GA, Fu A, Szpyt J, Reddy A, Prendeville H. UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nature Metabolism. 2021;3(5):604-17. https://doi.org/10.1038/s42255-021-00389-5 
6. Galloway CA, Yoon Y. Mitochondrial morphology in metabolic diseases. Antioxidants & Redox Signaling. 2013;19(4):415-30. https://doi.org/10.1089/ars.2012.4779 
7. Archer SL. Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. New England Journal of Medicine. 2013;369(23):2236-51. https://doi.org/10.1056/nejmra1215233 
8. Li R, Toan S, Zhou H. Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY). 2020;12(7):6467. https://doi.org/10.18632/aging.102972 
9. Orci LA, Gariani K, Oldani G, Delaune V, Morel P, Toso C. Exercise-based interventions for nonalcoholic fatty liver disease: a meta-analysis and meta-regression. Clinical Gastroenterology and Hepatology. 2016;14(10):1398-411.  https://doi.org/10.1016/j.cgh.2016.04.036 
10. Cho J, Johnson BD, Watt KD, Niven AS, Yeo D, Kim CH. Exercise training attenuates pulmonary inflammation and mitochondrial dysfunction in a mouse model of high-fat high-carbohydrate-induced NAFLD. Bio Med Central Medicine. 2022;20(1):429.  https://doi.org/10.1186/s12916-022-02629-1 
11. Evangelista FS, Ferreira MM, Fortunato‐Lima VC, Correa SM, Vecchiatto B, Martucci LF, et al. Metabolic cooperation between adipose tissue and skeletal muscle mediates the prevention of NAFLD through aerobic physical exercise. The FASEB Journal. 2022;36. https://doi.org/10.1096/fasebj.2022.36.s1.r3228 
12. Mostafavian M, Abdi A, Mehrabani J, Barari A. Effect of eight weeks of aerobic progressive training with capsaicin on changes in PGC-1α and UPC-1 expression in visceral adipose tissue of obese rats with diet. Complementary Medicine Journal. 2020;10(2):106-17.  https://doi.org/10.32598/cmja.10.2.627.4 
13. Gonçalves IO, Passos E, Diogo CV, Rocha-Rodrigues S, Santos-Alves E, Oliveira PJ, et al. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis. Applied Physiology, Nutrition, and Metabolism. 2016;41(3):298-306.  https://doi.org/10.1139/apnm-2015-0470 
14. Hu Z, Zhang H, Wang Y, Li B, Liu K, Ran J, Li L. Exercise activates Sirt1-mediated Drp1 acetylation and inhibits hepatocyte apoptosis to improve nonalcoholic fatty liver disease. Lipids in Health and Disease. 2023;22(1):33.  https://doi.org/10.1186/s12944-023-01798-z 
15. Rasht I. The interaction effect of aerobic exercise and atorvastatin consumption on the expression level of MFN1/2 and DRP1 in hepatocytes of the rat liver with type 2 diabetes. Journal of Ardabil University of Medical Sciences. 2022;21(4):388-401. [In Persion]. https://doi.org/10.52547/jarums.21.4.388 
16. Akyüz F, Demir K, Özdil S, Aksoy N, Poturoglu S, Ibrişim D, Kaymakoglu S, Besısık F, Boztas G, Çakaloglu Y, Mungan Z. The effects of rosiglitazone, metformin, and diet with exercise in nonalcoholic fatty liver disease. Digestive Diseases and Sciences. 2007;52:2359-67. https://doi.org/10.1007/s10620-006-9145-x 
17. Gu J, Liang H, Ge X, Xia D, Pan L, Mi H, Ren M. A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). Fish & Shellfish Immunology. 2022;120:214-21.  https://doi.org/10.1016/j.fsi.2021.11.024 
18. Caldas B.V, Guimarães V.H.D, Ribeiro G.H.M, dos Santos T.A.X, Nobre D.A, de Castro, R.J.S, et al. Effect of dietary supplementation withTenebrio molitor wholemeal and fermented flour modulating adipose lipogenesis gene expression in obese mice. Journal of Insects as Food and Feed. 2023;9(5):625-636.  https://doi.org/10.3920/jiff2022.0070 
19. Lee JY, Im AR, Shim KS, Ji KY, Kim KM, Kim YH, Chae S. Beneficial effects of insect extracts on nonalcoholic fatty liver disease. Journal of Medicinal Food. 2020;23(7):760-71.  https://doi.org/10.1089/jmf.2019.4536 
20. Ham JR, Choi RY, Lee Y, Lee MK. Effects of edible insect Tenebrio molitor larva fermentation extract as a substitute protein on hepatosteatogenesis and proteomic changes in obese mice induced by high-fat diet. International Journal of Molecular Sciences. 2021;22(7):3615.  https://doi.org/10.3390/ijms22073615 
21. Wang DQ, Schmitz F, Kopin AS, Carey MC. Targeted disruption of the murine cholecystokinin-1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. The Journal of Clinical Investigation. 2004;114(4):521-8. https://doi.org/10.1172/jci200416801 
22. Li J, Huang L, Xiong W, Qian Y, Song M. Aerobic exercise improves non-alcoholic fatty liver disease by down-regulating the protein expression of the CNPY2-PERK pathway. Biochemical and Biophysical Research Communications. 2022;603:35-40.  https://doi.org/10.1016/j.bbrc.2022.03.008 
23. Kim SY, Park JE, Han JS. Tenebrio molitor (mealworm) extract improves insulin sensitivity and alleviates hyperglycemia in C57BL/Ksj-db/db mice. Journal of Life Science. 2019;29(5):570-9.  https://doi.org/10.1007/s13596-024-00813-7 
24. Payne CL, Scarborough P, Rayner M, Nonaka K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends in Food Science & Technology. 2016;47:69-77.  https://doi.org/10.1016/j.tifs.2015.10.012 
25. Kang Y, Applegate CC, He F, Oba PM, Vieson MD, Sánchez-Sánchez L, Swanson KS. Yellow mealworm (Tenebrio molitor) and lesser mealworm (Alphitobius diaperinus) proteins slowed weight gain and improved metabolism of diet-induced obesity mice. The Journal of Nutrition. 2023;153(8):2237-48.  https://doi.org/10.1016/j.tjnut.2023.06.014 
26. Popov DV, Lysenko EA, Miller TF, Bachinin AV, Perfilov DV, Vinogradova OL. The effect of single aerobic exercise on the regulation of mitochondrial biogenesis in skeletal muscles of trained men: A time-course study. Human Physiology. 2015;41:296-303.  https://doi.org/10.1134/s0362119715030123 
27. Kianmehr P, Azarbayjani MA, Peeri M, Farzanegi P. Synergic effects of exercise training and octopamine on peroxisome proliferator-activated receptor-gamma coactivator-1a and uncoupling protein 1 mRNA in heart tissue of rat treated with deep frying oil. Biochemistry and Biophysics Reports. 2020;22:100735.  https://doi.org/10.1016/j.bbrep.2020.100735 
28. Mj G. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. Journal Appl Physiology. 2009;106:929-34.  https://doi.org/10.1152/japplphysiol.90880.2008 
29. Takahashi H, Kotani K, Tanaka K, Egucih Y, Anzai K. Therapeutic approaches to nonalcoholic fatty liver disease: exercise intervention and related mechanisms. Frontiers in Endocrinology. 2018;9:588. https://doi.org/10.3389/fendo.2018.00588 
30. Mozaffaritabar S, Koltai E, Zhou L, Bori Z, Kolonics A, Kujach S, Gu Y, Koike A, Boros A, Radák Z. PGC-1α activation boosts exercise-dependent cellular response in the skeletal muscle. Journal of Physiology and Biochemistry. 2024;80(2):329-35.  https://doi.org/10.1007/s13105-024-01006-1 
31. Mou YL, Zhao R, Lyu SY, Zhang ZY, Zhu MF, Liu Q. Crocetin protects cardiomyocytes against hypoxia/reoxygenation injury by attenuating Drp1-mediated mitochondrial fission via PGC-1α. Journal Geriatr Cardiol. 2023;20(1):68-82.  https://doi.org/10.26599/1671-5411.2023.01.001 
32. Gill JF, Delezie J, Santos G, McGuirk S, Schnyder S, Frank S, et al. PGC-1α regulates mitochondrial calcium homeostasis, SR stress and cell death to mitigate skeletal muscle aging. BioRxiv. 2019;23:451229. https://doi.org/10.1101/451229 
33. Turkyilmaz A, Lee Y, Lee MK. Fermented extract of mealworm (Tenebrio molitor larvae) as a dietary protein source modulates hepatic proteomic profiles in C57BLKS/J-db/db mice. Journal of Insects as Food and Feed. 2023;9(9):1199-210. https://doi.org/10.3920/jiff2022.0162 
34. Seo M, Goo TW, Chung MY, Baek M, Hwang JS, Kim MA, Yun EY. Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice. International Journal of Molecular Sciences. 2017;18(3):518. https://doi.org/10.3390/ijms18030518 
35. Ringseis R, Peter L, Gessner DK, Meyer S, Most E, Eder K. Effect of Tenebrio molitor larvae meal on the antioxidant status and stress response pathways in tissues of growing pigs. Archives of Animal Nutrition. 2021;75(4):237-50.  https://doi.org/10.1080/1745039x.2021.1950106 
36. Lee JB, Kwon DK, Jeon YJ, Song YJ. Mealworm (Tenebrio molitor)-derived protein supplementation attenuates skeletal muscle atrophy in hindlimb casting immobilized rats. Journal of Physiological Investigation. 2021;64(5):211-7. https://doi.org/10.4103/cjp.cjp_40_21 
37. Hermans WJ, Senden JM, Churchward-Venne TA, Paulussen KJ, Fuchs CJ, Smeets JS, et al. Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. The American Journal of Clinical Nutrition. 2021;114(3):934-944.  https://doi.org/10.1093/ajcn/nqab115 
38. Moberg M, Apró W, Ekblom B, Van Hall G, Holmberg HC, Blomstrand E. Activation of mTORC1 by leucine is potentiated by branched-chain amino acids and even more so by essential amino acids following resistance exercise. American Journal of Physiology-Cell Physiology. 2016;310(11):C874-84. https://doi.org/10.1152/ajpcell.00374.2015 
39. Kimball SR. Interaction between the AMP-activated protein kinase and mTOR signaling pathways. Medicine and Science in Sports and Exercise. 2006 Nov 1;38(11):1958. https://doi.org/10.1249/01.mss.0000233796.16411.13