مقایسه اثر تمرینات تناوبی شدید و تداومی متوسط بر سطوح سرمی گیرنده پپتید شبه گلوکاگون-1 ، فتوئین آ و حساسیت به انسولین در موش‌‌های نر مبتلا به کبد چرب غیرالکلی ناشی از رژیم پر چرب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه بیرجند، بیرجند، ایران.

2 استاد گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه بیرجند، بیرجند، ایران.

3 دانشیار فیزیولوژِی ورزشی، گروه واحدهای عمومی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران.

چکیده

زمینه و هدف: بیماری کبد چرب غیرالکلی ارتباط نزدیکی با مقاومت به انسولین در کبد و بافت‌های محیطی دارد و تمرین بدنی منظم می‌تواند با بهبود حساسیت به انسولین، در پیشگیری و درمان آن مؤثر باشد. هدف از مطالعه حاضر مقایسه اثر تمرینات تناوبی شدید و تداومی متوسط بر سطوح سرمی گیرنده پپتید شبه گلوکاگون-1 و فتوئین آ و حساسیت به انسولین در موش‌‌های نر مبتلا به کبد چرب غیرالکلی ناشی از رژیم پر چرب بود. روش‌‌تحقیق: در این مطالعه تجربی، تعداد 28 سر رت صحرایی نر با سن شش تا هشت هفته و با دامنه وزنی بین 150 تا 180 گرم، به‌طور تصادفی به چهار گروه (هر گروه هفت سر رت) شامل تمرین تناوبی شدید (80 تا 95 درصد حداکثر اکسیژن مصرفی)، تمرین تداومی متوسط (50 تا 60 درصد حداکثر اکسیژن مصرفی)، کنترل (بیماری کبد چرب) و کنترل سالم (غذای استاندارد)؛ تقسیم شدند. تمرینات ورزشی به مدت هشت هفته و هر هفته پنج جلسه، به اجرا درآمد. برای استخراج نتایج، از آزمون‌های آماری تحلیل واریانس یک‌راهه و توکی در سطح معنی‌‌داری 05/0≥p استفاده شد. یافته‌‌ها: تمرین تناوبی شدید و تمرین تدوامی متوسط، موجب کاهش سطح سرمی فتوئین آ (به ترتیب با 008/0=p و 03/0=p)؛ افزایش سطح سرمی گیرندۀ پپتید شبه گلوکاگون-1 (به‌ترتیب با 008/0=p و 003/0=p) و حساسیت به انسولین (به‌ترتیب با 007/0=p و 01/0=p) شدند؛ اما تفاوت معنی‌‌داری در سطح شاخص ها بین  دو گروه تمرینی مشاهده نشد (05/0>p). نتیجه‌‌گیری: تمرینات تناوبی شدید و تداومی متوسط، مستقل از نوع و شدت تمرین، موجب بهبود عوامل تعدیل کننده التهاب، کبد چرب و بهبود حساسیت به انسولین در موش های مبتلا به کبد چرب شدند؛ مدلی که می‌تواند در آینده، برای مطالعات انسانی مورد توجه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison effects of high-intensity interval and moderate continuous aerobic trainings on serum Glucagon like peptide-1receptor, Fetuin A and insulin sensitivity in male rats with high-fat diet-induced nonalcoholic fatty liver

نویسندگان [English]

  • Hamide Nakhayi 1
  • Mehdi Mogharnasi 2
  • Mohammad Esmaeil Afzalpour 2
  • Mohammadali Sardar 3
1 PhD in Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran.
2 Professor at Department Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran.
3 Associate Professor at Department of General Courses, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
چکیده [English]

Extended Abstract
Background and Aim: Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver disorders, histologically classified into nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). Although there is substantial evidence supporting the beneficial effects of aerobic exercise on NAFLD, the relative superiority of high-intensity interval training (HIIT) versus moderate-intensity continuous exercise remains inconclusive. Given the scarcity of comparative studies using animal models of diet-induced NAFLD, investigating the response of relevant markers to distinct training modalities may help elucidate non-pharmacological treatment pathways. The aim of this study was to compare the effects of HIIT and continuous aerobic training on serum levels of glucagon-like peptide-1 receptor (GLP-1R) and Fetuin A and insulin sensitivity in male rats with high-fat diet-induced NAFLD.
Materials and Methods: This study employed an experimental design. The statistical population of this study was male Wistar rats aged six to eight weeks with an average weight of 150 to 180 grams, which were randomly divided into four groups (each group of seven rats) including HIIT, moderate intensity continuous training (MICT), control (fatty liver disease), and healthy control (standard food). Except for the healthy control group, all rats received a high-fat diet for 12 weeks following a one-week acclimatization period. After the 12-week induction phase, seven rats were anesthetized for histopathological confirmation of hepatic steatosis; cardiac blood samples were collected for biochemical analyses and liver tissue was excised for histological assessment.
The training protocols were implemented according to Nunes et al. (2015). During the first week, rats in the training groups underwent a familiarization phase involving intermittent or continuous running for 10–30 min/day, five days/week, at 10–15 m/min. Fatigue was defined as remaining motionless on the electric grid at the end of the treadmill for 10–15 s.
Serum GLP1-R and Fetuin A concentrations were measured using a German Zelbio kit specific for rat samples (Padgin Teb). The sensitivity of the GLP1-R kit was 0.02 ng/ml, with an internal coefficient of variation of less than 10% and an external coefficient of variation of less than 12%. The sensitivity of the Fetuin A kit was 0.9 ng/ml, with an internal coefficient of variation of less than 10% and an external coefficient of variation of less than 12%. Serum insulin concentrations were measured using an Italian Mercodia kit using the ELISA method with a sensitivity of 0.15 μg/ml, and serum glucose concentrations was assessed using a Pars Azmoun Iran kit with a sensitivity of five mg/dl by calorimetry. Normality was examined using the Shapiro–Wilk test, and homogeneity of variances using Levene’s test. A one-way analysis of variance (ANOVA) was used to compare dependent variables among the four groups, followed by Tukey post hoc test when significant differences were detected. Statistical analyses were performed using SPSS version 21, with the significance level set at p≤0.05.
Findings: A descriptive summary and between-group comparison of GLP-1R, Fetuin-A, and insulin sensitivity indices in rats are presented in Table 1.
One-way ANOVA revealed significant differences in serum GLP-1R, Fetuin-A, and insulin sensitivity among the four experimental groups (Table 1). Accordingly to Tukey’s post hoc test, serum GLP-1R levels in both the HIIT and MICT groups were significantly higher than those in the NAFLD control group (p=0.008 and p=0.03, respectively): whereas no significant difference was found between the two training groups (p=0.95). Serum Fetuin-A levels were significantly lower in the HIIT and MICT groups compared to the NAFLD control group (p=0.01 and p=0.03, respectively), with no significant difference between the exercise groups (p=0.97). Similarly, insulin sensitivity was significantly higher in both HIIT and MICT groups than in the NAFLD control group (p=0.007 and p=0.01, respectively), while no significant difference was observed between these two exercise modalities (p=0.99).
Conclusion: According to the findings of the present study, fatty liver disease significantly increased serum levels of Fetuin A in rats, but both MICT and HIIT significantly decreased serum levels of Fetuin A to a level close to that of a healthy rat. Fatty liver disease significantly decreased insulin sensitivity in rats, but both trainings significantly increased insulin sensitivity to a level close to that of a healthy rat. Indeed fatty liver disease significantly decreased serum levels of GLP-1R in rats, but both trainings significantly increased this index to a level close to that of a healthy rat. No significant differences were observed between the effects of the two exercise training modalities on the investigated variables, highlighting the need for further studies in this area. Moreover, as this study was conducted on rats with diet-induced NAFLD, extrapolation of the results to humans should be performed cautiously and supported by future clinical research.
Ethical Considerations: Standard protocols and ethical principles of animal research were applied and controlled, and were reviewed and approved by the research committee of the Faculty of Sport Sciences, University of Birjand.
Funding: This article was produced without financial support.
Conflicts of interest: The authors declare that there are no conflicts of interest in this study.
 

کلیدواژه‌ها [English]

  • High-intensity interval training
  • Moderate continuous training
  • Glucagon-like peptide-1 receptor
  • Fetuin A
  • Insulin sensitivity
1. Calderon KS, Yucha CB, Schaffer SD. Obesity-related cardiovascular risk factors: intervention recommendations to decrease adolescent obesity. Journal of Pediatric Nursing. 2005 Feb 1;20(1):3-14. https://doi.org/10.1016/j.pedn.2004.12.001 
2. Jennison E, Patel J, Scorletti E, Byrne CD. Diagnosis and management of non-alcoholic fatty liver disease. Postgraduate Medical Journal. 2019 Jun;95(1124):314-22. https://doi.org/10.1136/postgradmedj-2018-136316  
3. Oliveira CP, de Lima Sanches P, de Abreu-Silva EO, Marcadenti A. Nutrition and physical activity in nonalcoholic fatty liver disease. Journal of Diabetes Research. 2016;2016(1):4597246. https://doi.org/10.1016/b978-0-12-407869-7.00007-6 
4. Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology. 2008 May 1;134(5):1369-75. https://doi.org/10.1053/j.gastro.2008.01.075 
5. Lomonaco R, Sunny NE, Bril F, Cusi K. Nonalcoholic fatty liver disease: current issues and novel treatment approaches. Drugs. 2013 Jan;73(1):1-4. https://doi.org/10.1007/s40265-012-0004-0      
6. Strasser B, Schobersberger W. Evidence for resistance training as a treatment therapy in obesity. Journal of obesity. 2011;2011(1):482564.  https://doi.org/10.1155/2011/482564 
7. Hallsworth K, Fattakhova G, Hollingsworth KG, Thoma C, Moore S, Taylor R, Day CP, et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut. 2011 Sep 1;60(9):1278-83. https://doi.org/10.1136/gut.2011.242073 
8. Ix JH, Sharma K. Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the roles of fetuin-A, adiponectin, and AMPK. Journal of the American Society of Nephrology. 2010 Mar 1;21(3):406-12. https://doi.org/10.1681/ASN.2009080820 
9. Malin SK, Del Rincon JP, Huang H, Kirwan JP. Exercise-induced lowering of fetuin-A may increase hepatic insulin sensitivity. Medicine and Science in Sports and Exercise. 2014 Nov;46(11):2085. https://doi.org/10.1249/MSS.0000000000000338 
10. Ehsanifar, M., Habibi Maleki, A., Tofighi, A., Khadem, M.H., & Toloui Azar, J.. Investigating the changes of haptokines and liver enzymes of obese rats fed a high-fat diet with different exercise modalities: or an experimental study.  Urmia Medical Journal, 2018; 30(6), 487-501. [In Persian].  http://umj.umsu.ac.ir/article-1-480-7fa.html  
11. Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago T, et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. Journal of Hepatology. 2017;66(1):142-52. https://doi.org/10.1016/j.jhep.2016.08.023 
12. Ramazani Rad, M., Hajirasouli, M., & Eizadi, M.. The effect of 12 weeks of aerobic training on glp-1 receptor expression in pancreatic tissue and glycemic control in type 2 diabetic rats. Qom University of Medical Sciences Journal, 2017; 11(6), 36-45. [In Persian]. https://doi.org/10.22049/jahssp.2023.28008.1499  
13. Lee S, Norheim F, Gulseth HL, Langleite TM, Kolnes KJ, Tangen DS, et al. Interaction between plasma fetuin‐A and free fatty acids predicts changes in insulin sensitivity in response to long‐term exercise. Physiological Reports. 2017 Mar;5(5):e13183. https://doi.org/10.14814/phy2.13183 
14. Kalhor, H., Peeri, M., Homaee, H.M., & Izadi, M.. The effect of 6 weeks resistance training and HITT on GLP-1 gene expression of diabetic rats. Iranian Journal Of Diabetes And Obesity, 2018;10(1), 42-49. [In Persian]. http://ijdo.ssu.ac.ir/article-1-384-en.html  
15. Nejati Baranlu, R., Atarzadeh Hosseini, S.R., Bijeh, N., & Raouf Saeb, A.A.. The effect of combined exercise on glp1 and insulin resistance in type 2 diabetic women. Scientific Research Journal of Shahid Sadoughi University of Medical Sciences, Yazd, 2017; 27(1), 1187-1201. ‎ [In Persian]. https://doi.org/10.18502/ssu.v27i1.877
16. Ghorbanian, B., Saberi, Y., & Babaluyan, S.. The effect of eight weeks of intense interval training on plasma levels of glucagon, glp1 and lipid indices in non-alcoholic fatty liver patients. Journal of Health Research, 2019;6(1), 42-54. [In Persian].‎ https://doi.org/10.22034/23.3.23
17. Zandi, B., & Abedi, B.. Effects of aerobic training with Ginger consumption on plasma levels of adipokine Glipican-4 and hepatokine Fetuin- A in rats with non-alcoholic fatty livers. Nutritional Sciences and Food Industries of Iran, 2022; 16 (4), 9-18. [In Persian]. https://doi.org/20.1001.1.17357756.1400.16.4.1.0
18. Turabi, M., & Mirzaei, B.. The effect of intense intermittent and moderate continuous aerobic training on some variables of glycemic control and fetoin A in patients with type 2 diabetes. Journal of Physiology of Exercise and Physical Activity, 2022;15(3), 81-90. [In Persian]. https://doi.org/1joeppa10.52547
19. Sargeant JA, Aithal GP, Takamura T, Misu H, Takayama H, Douglas JA, et al. The influence of adiposity and acute exercise on circulating hepatokines in normal-weight and overweight/obese men. Applied Physiology, Nutrition, and Metabolism. 2018;43(5):482-90. https://doi.org/10.1139/apnm-2017-0639 
20. Habibi Maleki A, Tofighi A, Ghaderi Pakdel F, Tolouei Azar J, Ehsani Far, M. Effect of three different exercise training modalities on blood lipid profile, Fetuin-A, and fibroblast growth factor 21 (FGF-21) in visceral adipose tissue of obese rats. Jundishapur Scientific Medical Journal. 2020;19(1):109-122. [In Persian]. https://doi.org/10.22118/jsmj.2020.209748.1923
21. Zelber‐Sagi S, Nitzan‐Kaluski D, Goldsmith R, Webb M, Zvibel I, Goldiner I, Blendis L, et al. Role of leisure‐time physical activity in nonalcoholic fatty liver disease: a population‐based study. Hepatology. 2008 Dec;48(6):1791-8. https://doi.org/10.1002/hep.22525 
22. Weigert C, Hoene M, Plomgaard P. Hepatokines—a novel group of exercise factors. Pflügers Archiv-European Journal of Physiology. 2019 Mar 7;471(3):383-96. https://doi.org/10.1007/s00424-018-2216-y 
23. Elmer DJ, Laird RH, Barberio MD, Pascoe DD. Inflammatory, lipid, and body composition responses to interval training or moderate aerobic training. European Journal of Applied Physiology. 2016 Mar;116(3):601-9. https://doi.org/10.1007/s00421-015-3308-4 
24. Baidal JA, Lavine JE. The intersection of nonalcoholic fatty liver disease and obesity. Science Translational Medicine. 2016 ;8(323):323rv1-. https://doi.org/10.1126/scitranslmed.aad8390 
25. Cho J, Kim S, Lee S, Kang H. Effect of training intensity on nonalcoholic fatty liver disease. Medicine and Science in Sports and Exercise. 2015;47(8):1624-34. https://doi.org/10.1249/mss.0000000000000595
26. Nunes RB, Alves JP, Kessler LP, Dornelles AZ, Stefani GP, Lago PD. Interval and continuous exercise enhances aerobic capacity and hemodynamic function in CHF rats. Brazilian Journal of Physical Therapy. 2015;19(4):257-63. https://doi.org/10.1590/bjpt-rbf.2014.0098 
27. Lee SS, Yoo JH, So YS. Effect of the low-versus high-intensity exercise training on endoplasmic reticulum stress and GLP-1 in adolescents with type 2 diabetes mellitus. Journal of Physical Therapy Science. 2015;27(10):3063-8. https://doi.org/10.1589/jpts.27.3063 
28. Sabziparvar S. Zolfaqar Didhani M. Khodayi K.. The effect of high-intensity interval training compared to meditation on QUICKI, McAuley, HOMA-IR indices, glycemic indices and lipid profile in women with type 2 diabetes. Journal of Sports and Biokinesiology. 2014; 15(30): 55–66. https://doi.org/10.22034/sbs.2023.410771.1048. 
29. Jung TW, Ahn SH, Shin JW, Kim HC, Park ES, Abd El‐Aty AM, et al. Protectin DX ameliorates palmitate‐induced hepatic insulin resistance through AMPK/SIRT 1‐mediated modulation of fetuin‐A and SeP expression. Clinical and Experimental Pharmacology and Physiology. 2019 Oct;46(10):898-909. https://doi.org/10.1111/1440-1681.13131 
30. Ramírez-Vélez R, García-Hermoso A, Hackney AC, Izquierdo M. Effects of exercise training on Fetuin-a in obese, type 2 diabetes and cardiovascular disease in adults and elderly: a systematic review and Meta-analysis. Lipids in Health and Disease. 2019;18(1):23. https://doi.org/10.1186/s12944-019-0962-2 
31. Heinrichsdorff J, Olefsky JM. Fetuin-A: the missing link in lipid-induced inflammation. Nature Medicine. 2012;18(8):1182-3.  https://doi.org/10.1111/1440-1681.13131 
32. Kazemi Nasab, F., Shujaei, M., & Khalafi, M.. The effect of exercise training on liver enzymes and liver fat content in adults with non-alcoholic fatty liver disease: a systematic review and meta-analysis. Iranian Journal of Diabetes and Metabolism (Iranian Journal of Diabetes and Lipid), 2022; 22(6), 342-360. [In Persian]. http://ijdld.tums.ac.ir/article-1-6191-en.html  
33. Yang SJ, Hong HC, Choi HY, Yoo HJ, Cho GJ, Hwang TG, Baik SH, Choi DS, Kim SM, Choi KM. Effects of a three‐month combined exercise programme on fibroblast growth factor 21 and fetuin‐A levels and arterial stiffness in obese women. Clinical Endocrinology. 2011;75(4):464-9. https://doi.org/10.1111/j.1365-2265.2011.04078.x 
34. Care, A. Updates to the standards of medical care in diabetes. Journal of Human Physiology, 2018;41(9), 2045-7 https://doi.org/10.2337/dc18-su09 
35. Stefan N, Häring HU. The role of hepatokines in metabolism. Nature Reviews Endocrinology. 2013 Mar;9(3):144-52. https://doi.org/10.1007/s00424-018-2216-y 
36. Roden M. Hepatic glucose production and insulin resistance. Wiener Medizinische Wochenschrift. 2008 Oct;158(19):558-61.  https://doi.org/10.1007/s10354-008-0595-y 
37. Mathews ST, Rakhade S, Zhou X, Parker GC, Coscina DV, Grunberger G. Fetuin-null mice are protected against obesity and insulin resistance associated with aging. Biochemical and Biophysical Research Communications. 2006;350(2):437-43. https://doi.org/10.1016/j.bbrc.2006.09.071 
38. Kazemzadeh Y, Baneifar A, Shirvani H, Qaraat A. The effect of 8 weeks of high-intensity interval training on body composition, fat profile and insulin sensitivity in overweight young men, Sports Physiology Journal, 2016; 9(2), 1385-1394. [In Persian]. https://doi.org/10.48308/joeppa.2016.98829
39. Behkar M, Eizadi M, Sedaghaty S, Kazemzadeh Y, Moslehi M. Impact of high-intensity interval training on GLP-1R/ PKBα axis in pancreatic tissue of diabetic rats induced by high-fat diet and STZ. Iranian Journal of Endocrinology and Metabolism, 2023; 24(6), 373-383. [In Persian]. https://doi.org/10.22049/jahssp.2023.28954.1582
40. Meloni AR, DeYoung MB, Lowe C, Parkes DG. GLP‐1 receptor activated insulin secretion from pancreatic β‐cells: mechanism and glucose dependence. Diabetes, Obesity and Metabolism. 2013;15(1):15-27. https://doi.org/10.1111/j.1463-1326.2012.01663.x