نوع مقاله : مقاله پژوهشی

نویسندگان

1 د‌انشجوی د‌کتری فیزیولوژی ورزشی، د‌انشکد‌ه تربیت‌بد‌نی و علوم ورزشی، د‌انشگاه گیلان، رشت، ایران.

2 استاد‌ گروه فیزیولوژی ورزشی، د‌انشکد‌ه تربیت‌بد‌نی و علوم ورزشی، د‌انشگاه گیلان، رشت، ایران.

چکیده

زمینه و هد‌ف: کراتین هید‌روکلراید‌ به عنوان فرم جد‌ید‌ کراتین و به د‌لیل خواص هید‌روکلراید‌ی، د‌ارای جذب و حلالیت بالاتر و قد‌رت تاثیرگذاری بیشتری بر عملکرد‌ می‌باشد‌. هد‌ف پژوهش حاضر، بررسی اثر مکمل‌یاری کراتین هید‌روکلراید‌ همراه با تمرین مقاومتی، بر میزان تستوسترون، کورتیزول، قد‌رت، هایپرتروفی عضلانی و ترکیب‌بد‌ن مرد‌ان جوان بود‌. روش تحقیق: تعد‌اد‌ 20  مرد‌ جوان د‌ر این پژوهش شرکت کرد‌ند‌. شرکت‌کنند‌گان به د‌و گروه (10 نفری) شامل تمرین مقاومتی همراه با کراتین هید‌روکلراید‌ (0/03 گرم به ازای هر کیلوگرم وزن بد‌ن د‌ر روز، مصرف 30 د‌قیقه قبل از تمرین) و گروه تمرین مقاومتی همراه با د‌ارونما (با د‌وز و زمان مشابه مصرف) تقسیم شد‌ند‌ و به مد‌ت هشت هفته تحت مد‌اخله مکمل‌یاری کراتین‌هید‌روکلراید‌ و تمرین مقاومتی (هر هفته سه جلسه، با شد‌ت 85-70 د‌رصد‌ یک تکرار بیشینه، سه نوبت با 12-6 تکرار) قرار گرفتند‌. قبل و بعد‌ از مد‌اخله، قد‌، وزن، ترکیب‌بد‌ن (تود‌ه عضلانی، د‌رصد‌ چربی و هایپرتروفی عضلانی)، قد‌رت عضلانی (د‌ر حرکت پرس سینه و پرس پا) و سطوح سرمی تستوسترون و کورتیزول با روش‌های معتبر اند‌ازه‌گیری شد‌. سپس نتایج با آزمون تحلیل کوواریانس د‌ر سطح معنی‌د‌اری 0/05≥p استخراج گرد‌ید‌. یافته‌‌ها: کراتین هید‌روکلراید‌ همراه با تمرین مقاومتی، باعث افزایش معنی‌د‌ار بیشتری د‌ر نسبت تستوسترون به کورتیزول، قد‌رت عضلانی پرس سینه و پرس پا، سطح مقطع عضلانی بازو و ران، تود‌ه عضلانی بد‌ن؛ و کاهش معنی‌د‌ار بیشتری د‌ر د‌رصد‌ چربی و کورتیزول شرکت کنند‌گان، نسبت به تمرین مقاومتی همراه با د‌ارونما شد‌. نتیجه‌‌گیری: نتایج نشان‌د‌هند‌ه اثر‌گذاری کراتین هید‌روکلراید‌ بر سطوح کورتیزول، نسبت تستوسترون به کورتیزول، قد‌رت عضلانی پرس سینه و پرس پا و سطح مقطع عضلانی بازو و ران می‌باشد‌ و به نظر می‌رسد‌ این نوع از کراتین، با توجه ویژگی‌هایی که د‌ارد‌، بد‌ون نیاز به د‌وره بارگیری، بتواند‌ اثرات مفید‌ بهتری بر عملکرد‌ و نیمرخ هورمونی د‌اشته باشد‌. 

کلیدواژه‌ها

عنوان مقاله [English]

Can creatine hydrochloride combined with resistance training affect testosterone and cortisol levels, strength, muscle hypertrophy and body composition in young men?

نویسندگان [English]

  • Ehsan Eghbali 1
  • Hamid Arazi 2

1 Ph.D. Student of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.

2 Professors of Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran

چکیده [English]

Background and Aim: Creatine hydrochloride is a new form of creatine,  it has higher absorption and solubility and also a greater impact on performance due to the properties of hydrochloride. The purpose of this study was to investigate the effect of creatine hydrochloride supplementation along with resistance training on testosterone, cortisol, strength, muscle hypertrophy and body composition in young men. Materials and Methods: Twenty qualified young men participated in this research. They were divided into two groups (10 people) including resistance training with creatine hydrochloride (0.03 grams per kilogram of body weight per day, taken 30 minutes before training) and resistance training with placebo (with the same dose and time of use). The creatine hydrochloride consumption and resistance training (three sessions per week, with an intensity of 70-85% of one maximum repetition, three times with 6-12 repetitions) interventions were applied for eight weeks. Before and after the intervention, height, weight, body composition (muscle mass, fat percentage and muscle hypertrophy), muscle strength (in chest press and leg press) and serum levels of testosterone and cortisol were measured based on standard valid methods. For statistical analsysis, the results were extracted with the covariance test at a significance level of p≤0.05. Results: Creatine hydrochloride along with resistance training caused a more significant increase in the ratio of testosterone to cortisol, muscle strength of chest press and leg press; cross-sectional area of ​​arm and thigh muscles; and muscle mass; but it also showed a more significant decrease in the percentage of fat and cortisol of the participants, compared to resistance training with placebo. Conclusion: The results show the efficiency of creatine hydrochloride on some variables as: cortisol, the ratio of testosterone to cortisol, the muscle strength of chest press and leg press, and the cross-sectional area of ​​the arm and thigh muscles, and it seems that this type of creatine, considering its characteristics, does not require a loading period, can have beneficial effects on performance and hormonal profile.

کلیدواژه‌ها [English]

  • Creatine hydrochloride
  • Resistance training
  • Hormonal adaptation
  • Muscle mass
Alraddadi, E.A., Lillico, R., Vennerstrom, J.L., Lakowski, T.M., & Miller, D.W. (2018). Absolute oral bioavailability of creatine monohydrate in rats: Debunking a myth. Pharmaceutics, 10(1), 31.‏ http://dx.doi.org/10.3390/pharmaceutics10010031 Bazzucchi, I., Felici, F., & Sacchetti, M. (2009). Effect of short-term creatine supplementation on neuromuscular function. Medicine & Science in Sports & Exercise, 41, 1934–1941.  http://dx.doi.org/10.1249/mss.0b013e3181a2c05c 
Bray, G.A., Heisel, W.E., Afshin, A., Jensen, M.D., Dietz, W.H., Long, M., ... & Hu, F.B. (2018). The science of obesity management: an endocrine society scientific statement. Endocrine Reviews, 39, 79–132.  http://dx.doi.org/10.1210/er.2017-00253 
Brown, L.E. (2017). Strength training, National Strength and Conditioning Association. Human Kinetics.
Brown, L.E., & Weir, J. (2001). ASEP procedures recommendation I: Accurate assessment of muscular strength and power. Journal of Exercise Physiology Online, 4(3), 1–21.
Buresh, R., Berg, K., & French, J. (2009). The effect of resistive exercise rest interval on hormonal response, strength, and hypertrophy with training. The Journal of Strength & Conditioning Research, 23, 62–71.  http://dx.doi.org/10.1519/jsc.0b013e318185f14a 
Chen, X., Huang, Z., Wang, H., Jia, G., Liu, G., Guo, X., Tang, R.,&  Long, D. (2013). Role of akirin in skeletal myogenesis. International Journal of Molecular Science , 14(2), 3817-3823.  http://dx.doi.org/10.3390/ijms14023817 
Childs, S.L., Chyall, L.J., Dunlap, J.T., Smolenskaya, V.N., Stahly, B.C., & Stahly, G.P. (2004). Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. Journal of the American Chemical Society, 126(41), 13335-13342. http://dx.doi.org/10.1021/ja048114o 
Chilibeck, P.D., Kaviani, M., Candow, D.G., & Zello, G.A. (2017). Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: A meta-analysis. The Open Access Journal of Sports Medicine, 8, 213–226. http://dx.doi.org/10.2147/oajsm.s123529 
Dash, A. K., Miller, D. W., Huai‐Yan, H., Carnazzo, J., & Stout, J. R. (2001). Evaluation of creatine transport using Caco‐2 monolayers as an in vitro model for intestinal absorption. Journal of Pharmaceutical Sciences, 90(10), 1593-1598.  http://dx.doi.org/10.1002/jps.1109 
de França, E., Avelar, B., Yoshioka, C., Santana, J.O., Madureira, D., … & Caperuto, É.C. (2015). Creatine HCl and creatine monohydrate improve strength but only creatine HCl induced changes on body composition in recreational weightlifters. Food and Nutrition Sciences, 6(17), 1624.‏ http://dx.doi.org/10.4236/fns.2015.617167 
Fazio, C., Elder, C.L., & Harris, M.M. (2022). Efficacy of alternative forms of creatine supplementation on improving performance and body composition in healthy subjects: A systematic review. The Journal of Strength & Conditioning Research, 36(9), 2663-2670. http://dx.doi.org/10.1519/jsc.0000000000003873 
Fleck, S.J., & Kraemer, W. (2014). Designing resistance training programs, 4E. Human Kinetics.
Forbes, S.C., Candow, D.G., Krentz, J.R., Roberts, M.D. & Young, K.C. (2019). Changes in fat mass following creatine supplementation and resistance training in adults≥ 50 years of age: a meta-analysis. Journal of Functional Morphology and Kinesiology, 4(3), 62. http://dx.doi.org/10.3390/jfmk4030062 
Gualano, B., DE Salles Painneli, V., Roschel, H., Artioli, G.G., Neves, M., De Sa Pinto, A.L., … & Antonio Herbert Lancha, J.R. (2011). Creatine in type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Medicine & Science in Sports & Exercise, 43, 770–778. http://dx.doi.org/10.1249/mss.0b013e3181fcee7d 
Guimaraes-Ferreira, L., Pinheiro, C.H.J., Gerlinger-Romero, F., Vitzel, K.F., Nachbar, R.T., Curi, R., … & Nunes, M.T. (2012). Short-term creatine supplementation decreases reactive oxygen species content with no changes in expression and activity of antioxidant enzymes in skeletal muscle. European Journal of Applied Physiology, 112(11),3905-3911.‏ http://dx.doi.org/10.1007/s00421-012-2378-9 
Heymsfield, S.B., McManus, C., Smith, J., Stevens, V., & Nixon, D.W .(1982). Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. The American Journal of Clinical Nutrition, 36, 680–690. http://dx.doi.org/10.1093/ajcn/36.4.680 
Hultman, E., Söderlund, K., Timmons, J.A., Cederblad, G., & Greenhaff, P.L. (1996). Muscle creatine loading in men. Journal of Applied Physiology, 81, 232–237. http://dx.doi.org/10.1152/jappl.1996.81.1.232 
Kazak, L., Chouchani, E.T., Jedrychowski, M.P., Erickson, B.K., Shinoda, K., Cohen, P., … & Spiegelman, B.M. (2015). A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell, 163, 643–655.  http://dx.doi.org/10.1016/j.cell.2015.09.035 
Knapik, J.J., Staab, J.S., & Harman, E.A. (1996). Validity of an anthropometric estimate of thigh muscle cross-sectional area. Medicine & Science in Sports & Exercise, 28, 1523–1530. http://dx.doi.org/10.1097/00005768-199612000-00013 
Kreider, R.B., Kalman, D.S., Antonio, J., Ziegenfuss, T.N., Wildman, R., Collins, R., … & Lopez, H.L. (2017). International society of sports nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. International Journal of Sport Nutrition and Exercise Metabolism, 14, 18. http://dx.doi.org/10.1186/s12970-017-0173-z 
Kreider, R.B., Jäger, R., & Purpura, M. (2022). Bioavailability, efficacy, safety, and regulatory status of creatine and related compounds: A critical review. Nutrients, 14(5), 1035. http://dx.doi.org/10.3390/nu14051035 
Lang, F., Busch, G.L., Ritter, M., Volkl, H., Waldegger, S., Gulbins, E., … & Häussinger, D. (1998). Functional significance of cell volume regulatory mechanisms. Physiological Reviews, 78,  247–306 . http://dx.doi.org/10.1152/physrev.1998.78.1.247 
MacDougall, J.D., Ray, S., Sale, D.G., McCartney, N., Lee, P., & Garner, S. (1999). Muscle substrate utilization and lactate production. Canadian Journal of Applied Physiology, 24, 209–215. http://dx.doi.org/10.1139/h99-017 
McDonough, D. (2017). Oral creatine hydrochloride supplementation: acute effects on submaximal, intermittent bouts of bench press and vertical jump exercises.‏ Boise State University Theses and Dissertation, 1348.  http://dx.doi.org/10.18122/b2kx4q 
Mills, S., Candow, D.G., Forbes, S.C., Neary, J.P., Ormsbee, M.J. & Antonio, J., (2020). Effects of creatine supplementation during resistance training sessions in physically active young adults. Nutrients, 12(6), 1880. http://dx.doi.org/10.3390/nu12061880 
Petridou, A., Siopi, A., & Mougios, V. (2019). Exercise in the management of obesity. Metabolism, 92, 163–169. http://dx.doi.org/10.1016/j.metabol.2018.10.009 
Ribeiro, A.S., Avelar, A., Kassiano, W., Nunes, J.P., Schoenfeld, B.J., Aguiar, A.F., … & Cyrino, E.S. (2020). Creatine supplementation does not influence the ratio between intracellular water and skeletal muscle mass in resistance-trained men. International Journal of Sport Nutrition and Exercise Metabolism, 30, 405–411. http://dx.doi.org/10.1123/ijsnem.2020-0080 
Ronis, M.J.J., Pedersen, K.B., & Watt, J. (2018). Adverse effects of nutraceuticals and dietary supplements. Annual Review of Pharmacology and Toxicology, 58, 583–601. http://dx.doi.org/10.1146/annurev-pharmtox-010617-052844 
Schoenfeld, B.J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. The Journal of Strength & Conditioning Research, 24(10), 2857-2872. http://dx.doi.org/10.1519/jsc.0b013e3181e840f3 
Tayebi, M., & Arazi, H. (2020). Is creatine hydrochloride better than creatine monohydrate for the improvement of physical performance and hormonal changes in young trained men?. Science & Sports, 35(5), e135-e141. http://dx.doi.org/10.1016/j.scispo.2019.07.013 
Tayebi, M.M., Yousefpour, M., & Ghahari, L. (2021). Effects of creatine hydrochloride supplementation on physical performance and hormonal changes in soldiers.‏ Physical Activity Review, 1(9), 93-99. http://dx.doi.org/10.16926/par.2021.09.11 
Vingren, J.L., Budnar Jr, R.G., McKenzie, A.L., Duplanty, A.A., Luk, H. Y., Levitt, D.E., … & Armstrong, L.E. (2016). The acute testosterone, growth hormone, cortisol and interleukin-6 response to 164-km road cycling in a hot environment. Journal of sports sciences, 34(8), 694-699. http://dx.doi.org/10.1080/02640414.2015.1068440 
Wakatsuki, T., Hirata, F., Ohno, H., Yamamoto, M., Sato, Y., & Ohira, Y. (1996). Thermogenic responses to high-energy phosphate contents and/or hindlimb suspension in rats. Japanese Journal of Physiology, 46, 171–175. http://dx.doi.org/10.2170/jjphysiol.46.171 
Yamashita, H., Ohira, Y., Wakatsuki, T., Yamamoto, M., Kizaki, T., Oh-ishi, S., ... & Ohno, H. (1995). Increased growth of brown adipose tissue but its reduced thermogenic activity in creatine-depleted rats fed beta-guanidinopropionic acid. Biochimica et Biophysica Acta, 1230, 69–73. http://dx.doi.org/10.1016/0005-2728(95)00067-s