نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دوره دکتری فیزیولوژی ورزشی، گروه علوم ورزشی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

2 دانشیار فیزیولوژی ورزشی، گروه علوم ورزشی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

3 دانشیار گروه زیست‌شناسی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.

4 استادیار فیزیولوژی ورزشی، گروه علوم ورزشی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

چکیده

زمینه و هدف: عدم تنظیم در میکرو آر ان اِ ها (miRNAs)، نقش کلیدی در بروز اختلالات رایجی از جمله درد، در بیماری پارکینسون دارند. هدف مطالعه حاضر، بررسی اثر یک دوره تمرین شنا بر miRNAs مرتبط با درد، در موش‌های مبتلا به پارکینسون بود. روش تحقیق: تعداد 21 سرموش نر نژاد ویستار هشت تا 10 هفته‌ای، در سه گروه (هر گروه هفت سر موش) شامل گروه سالم، بیمار، و تمرین شنا تقسیم شدند. به گروه بیمار و تمرین، با تزریق یک میلی‌گرم به ازای هر کیلو وزن رزرپین، بیماری پارکینسون القا شد. تمرین شنای تناوبی شدید به مدت شش هفته در قالب 20 نوبت 30 ثانیه‌ای، با 30 ثانیه استراحت بین نوبت‌ها؛ با تکرار سه جلسه در هفته، اجرا گردید. بیان ژن  های mir-23b و mir-let-7 در بافت هیپوکامپ، با روش Real Time-PCR اندازه‌گیری شد. تغییرات بیان ژن با استفاده از آزمون تحلیل واریانس یک راهه و آزمون تعقیبی LSD در سطح معنی‌داری 05/0>p تجزیه و تحلیل شدند. یافته‎ها: بیان ژن هیپوکامپی mir-23b در گروه بیمار نسبت به گروه سالم، به طور معنی‌داری پایین‌تر بود (01/0=p)؛ اما تفاوتی بین گروه بیمار با گروه تمرین (22/0=p) و بین گروه تمرین و گروه سالم (09/0=p)؛ مشاهده نشد. از طرف دیگر، بیان ژن هیپوکامپی mir-let-7 تفاوت معنی‌داری بین گروه بیمار و گروه سالم نداشت (50/0=p)؛ و تفاوت معنی‌داری در بیان این ژن، بین گروه تمرین و سالم (82/0=p)، و بین گروه بیمار و تمرین (64/0=p)؛ مشاهده نشد. نتیجه‎گیری: به نظر می‎رسد تمرینات شنای تناوبی شدید تأثیر چندانی بر miRNAs مرتبط با درد، در موش‌های پارکینسونی ندارد؛ هرچند به دلیل محدودیت های موجود، نیاز به بررسی های بیشتر می باشد.

کلیدواژه‌ها

عنوان مقاله [English]

The effect of swimming training on hypocampic mir-23b and mir-let-7 gene expression related to pain in Wistar rats with Parkinson’s disease

نویسندگان [English]

  • Reza Zeinolebadi 1
  • Mehrzad Moghadasi 2
  • Mohammdamin Edalatmanesh 3
  • Mehdi Noora 4

1 PhD student in exercise physiology, Department of exercise physiology, Shiraz branch, Islamic Azad University, Shiraz, Iran

2 Associate professor of exercise physiology, Department of exercise physiology, Shiraz branch, Islamic Azad University, Shiraz, Iran

3 Associate Professor at Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.

4 Assistant professor of exercise physiology, Department of exercise physiology, Shiraz branch, Islamic Azad University, Shiraz, Iran

چکیده [English]

Background and Aim: Dysregulated miRNAs play critical roles in many disorders such as pain in Parkinson’s disease (PD). The aim of this study was to examine the effect of swimming training on hypocampic miRNAs gene expression related to pain in rats with PD. Materials and Methods: Twenty-one male Wistar rats (age eight to 10 weeks) were divided (n=7) into healthy control, PD, and training groups. PD was induced by injection of one mg/kg Reserpine to rats in PD and training groups. The rats in the training group performed six weeks of high-intensity interval training, including 20 times of 30 seconds of swimming with 30 seconds rest between each time and three times a week. mir-23b and mir-let-7 gene expressions were measured in hippocampus using Real Time-PCR method. Data were analyzed using one-way ANOVA and LSD tests at a significant level of p<0.05. Results: The  hypocampic mir-23b gene expression was significantly lower in PD compare to the healthy control group (p=0.01), while no significant difference was observed between PD and training groups (p=0.22); and between healthy control and training groups (p=0.09). On the other hand, hypocampic mir-let-7 gene expression did not significantly difference between PD  and healthy control group (p=0.50); moreover, no significant difference was observed between PD and training (p=0.82); and healthy and training (p=0.64) groups. Conclusion: It seems that high-intensity interval swimming training did not affect miRNAs related pain in rats with PD; however, due to existing limitations, more investigations are needed.

کلیدواژه‌ها [English]

  • Parkinson’s disease
  • Swimming training
  • Pain
  • miRNAs gene expression
Abbasi, M., Kordi, M., Daryanoosh, F. (2023). The effect of eight weeks of high-intensity interval swimming training on the expression of PGC-1α and IL-6 proteins and memory function in brain hippocampus in rats with non-alcoholic steatohepatitis induced by high fat diet. Journal of Applied Health Studies in Sport Physiology, In press. https://doi.org/10.22049/jahssp.2023.28611.1552
Anoosheh, L., Kordi, M.R., Gaeini, A., Mahdian, R., & Mirakhori, Z. (2015). Effects of exercise training on development of breast cancer in mice. Biomedical & Pharmacology Journal, 8(2), 785-792. https://dx.doi.org/10.13005/bpj/827 
Bayati, M., Gharakhanlou, R., & Farzad, B. (2015). Adaptations of physiological performance following high-intensity interval training. Sport Physiology, 7, 15-32. [In Persian]. https://doi: 20.1001.1.2322164.1394.7.26.1.3
Bjersing, J.L., Lundborg, C., Bokarewa, M.I., & Mannerkorpi, K. (2013). Profile of cerebrospinal microRNAs in fibromyalgia. PLoS One, 8(10), e78762. https://doi.org/10.1371/journal.pone.0078762 
Buhmann, C., Wrobel, N., Grashorn, W., Fruendt, O., Wesemann, K., Diedrich, S., … & Bingel, U. (2017). Pain in Parkinson disease: A cross-sectional survey of its prevalence, specifics, and therapy. Journal of Neurology, 264, 758–769. https://doi: 10.1007/s00415-017-8426-y 
Cai, M., Chai, S., Xiong, T., Wei, J., Mao, W., Zhu, Y., … & Xiong, N. (2021). Aberrant expression of circulating microRNA leads to the dysregulation of alpha-synuclein and other pathogenic genes in Parkinson’s disease. Frontiers in Cell and Developmental Biology, 9, 695007. https://doi: 10.3389/fcell.2021.695007
Camera D.M., Ong J.N., Coffey V.G., & Hawley J.A. (2016). Selective modulation of microRNA expression with protein ingestion following concurrent resistance and endurance exercise in human skeletal muscle. Frontiers in Physiology, 7, 87. https://doi: 10.3389/fphys.2016.00087
Corder, G., Castro, D.C., Bruchas, M.R., & Scherrer, G. (2018). Endogenous and exogenous opioids in pain. Annual Review of Neuroscience, 41(1), 453–73. https://doi.org/10.1146/annurev-neuro-080317-061522
Dauer, W., & Przedborski, S. (2003). Parkinson's disease: mechanisms and models. Neuron, 39(6), 889–909. https://doi.org/10.1016/S0896-6273(03)00568-3
Guévremont, D., Roy, J., Cutfield N.J., & Williams, J.M. (2023). MicroRNAs in Parkinson’s disease: a systematic review and diagnostic accuracy meta-analysis. Scientific Reports, 13(1), 16272. https://doi: org/10.1038/s41598-023-43096-9
Hu, L., Zhang, H., Wang, B., Ao, Q., Shi, J., & He, Z. (2019). MicroRNA-23b alleviates neuroinflammation and brain injury in intracerebral hemorrhage by targeting inositol polyphosphate multikinase. International Immunopharmacology, 76, 105887. https://doi.org/10.1016/j.intimp.2019.105887
Hubrecht, R., & Kirkwood, J. (2010). UFAW Handbook on the care and management of laboratory and other research animals. 8th ed. Wiley-Blackwell Publishing Ltd, P:460-520.
Iliopoulos, D., Hirsch, H.A., & Struhl, K. (2009). An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell,139(4), 693-706. https://doi.org/10.1016/j.cell.2009.10.014 
Im, Y.B., Jee, M.K., Choi, J.I., Cho, H.T., Kwon, O.H., & Kang, S.K. (2012). Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord. Cell Death and Disease, 3(11), e426. https://doi.org/10.1038/cddis.2012.168
Isanejad, A., Alizadeh, A.M., Amani Shalamzari, S., Khodayari, H., Khodayari, S., Khori, V. … & Khojastehnezhad, N. (2016). MicroRNA-206, let-7a and microRNA-21 pathways involved in the anti-angiogenesis effects of the interval exercise training and hormone therapy in breast cancer. Life Sciences, 151, 30-40. https://doi.org/10.1016/j.lfs.2016.02.090
Ji, R, Nackley, A., Huh, Y., Terrando, N., & Maixner, W. (2018). Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology, 129(2), 343–366. https://doi.org/10.1097/ALN.0000000000002130
Kielb, S., Kisanuki, Y.Y., & Dawson, E. (2021). Neuropsychological profile associated with an alpha-synuclein gene (SNCA) duplication. Clinical Neuropsychologist, 36(7), 1787-1798. https://doi.org/10.1080/13854046.2021.1914735
Lee, M., Wada, S., Oikawa, S., Suzuki, K., Ushida, T., & Akimoto, T. (2019). Loss of microRNA-23–27–24 clusters in skeletal muscle is not influential in skeletal muscle development and exercise-induced muscle adaptation. Scientific Reports, 9(1), 1092. https://doi.org/10.1038/s41598-018-37765-3
Nagle, E.F., Sanders, M.E., & Franklin, B.A. (2017). Aquatic high intensity interval training for cardiometabolic health: Benefits and training design. American Journal of Lifestyle Medicine, 11(1), 64-76.  https://doi.org/10.1177/1559827615583640
Nummenmaa, L., & Tuominen, L. (2018). Opioid system and human emotions. British Journal of Pharmacology, 175(14), 2737–49.  https://doi.org/10.1111/bph.13812
Nussbaum, R.L., & Ellis, C.E. (2003). Alzheimer’s disease and Parkinson’s disease. New England Journal of Medicine, 348, 1356–1364.  https://doi.org/10.1056/NEJM2003ra020003
Parent, A. (2018). A tribute to James Parkinson. Canadian Journal of Neurological Sciences, 45(1), 83-89.  https://doi.org/10.1017/cjn.2017.270.
Ryu, D.W., Han, K., & Cho, A. (2023). Mortality and causes of death in patients with Parkinson’s disease: a nationwide population-based cohort study. Front Neurology, 14, 1-13.  https://doi.org/10.3389/fneur.2023.1236296
Salemi, M., Marchese, G., Lanza, G., Cosentino, F.I.I., Salluzzo, M.G., Schillaci, F.A., … & Ferri, F. (2023). Role and dysregulation of miRNA in patients with Parkinson’s disease. International Journal of Molecular, 24(1), 712.  https://doi.org/10.3390/ijms24010712.
Shafiee, A., Gaeini, A., Soleimani, M., Nekouei, A., & Hadidi V. (2014). The effect of eight week of high intensity interval training on expression of mir-210 and ephrinA3 mRNA in soleus muscle healthy male rats. Journal of Arak University of Medical Sciences, 17(3), 26-34. [In Persian]. http://jams.arakmu.ac.ir/
Sun, L., Liu, A., Zhang, J., Ji, W., Li, Y., Yang, X., … & Guo, J. (2018). miR-23b improves cognitive impairments in traumatic brain injury by targeting ATG12-mediated neuronal autophagy. Behavioural Brain Research, 340, 126–136. https://doi.org/10.1016/j.bbr.2016.09.020
Zahraei, H., Mogharnasi, M., Afzalpour, M.E., & Fanaei, H. (2022). The effect of 8 weeks of continuous and high intensity interval swimming on chemerin levels in liver and visceral fat tissues and insulin resistance in male rats with metabolic syndrome. Journal of Sport and Exercise Physiology, 15(1), 33-44. https://doi.org/10.52547/joeppa.15.1.33
Zhang, J., Zhou, D., Zhang, Z., Qu, X., Bao, K., Lu, G., … & Duan, J. (2019). miR-let-7a suppresses α-Synuclein-induced microglia inflammation through targeting STAT3 in Parkinson’s disease. Biochemical and Biophysical Research Communications, 519(4), 740-746. https://doi.org/10.1016/j.bbrc.2019.08.140
Zhu, X., Zhang, A., Dong, J., Yao, Y., Zhu, M., Xu, K., & Al Hamda, M.H. (2019). MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy. Brain Research Bulletin, 152(2019), 175-183. https://doi:10.1016/j.brainresbull.2019.07.021