نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی، دانشگاه آزاد اسلامی واحد اسلامشهر، اسلامشهر، ایران.

2 استاد فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه شهرکرد، شهرکرد، ایران.

3 استادیار فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی، دانشگاه آزاد اسلامی واحد اسلامشهر، اسلامشهر، ایران.

چکیده

زمینه و هدف: فوتبال به‌‌ عنوان محبوب‌‌ترین رشته ورزشی در جهان شناخته می‌‌شود و با توجه به ماهیت این رشته ورزشی و آسیب‌‌های آن، محققین هنوز تاثیر تمرینات ورزشی بر روی سطوح مختلف را به خوبی نشناخته‌‌اند. لذا هدف از تحقیق حاضر مقایسه اثر هشت تمرین پلایومتریک روی سطوح سالن و چمن بر نشانگرهای  آسیب عضلانی در بازیکنان فوتبال بود.  روش تحقیق: در این مطالعه نیمه ‌‌تجربی، 36 بازیکن فوتبال لیگ دسته یک و دو رده جوانان و امید کشوری (با میانگین سنی 81/2 ± 94/20 سال) به عنوان نمونه آماری انتخاب شدند. سپس به‌‌طور تصادفی در سه گروه مساوی (12 نفر) شامل تمرین پلایومتریک روی چمن، تمرین پلایومتریک در سالن و گروه کنترل تقسیم گردیدند. تمرینات منتخب پلایومتریک روی سطوح سالن و چمن به مدت هشت هفته، دو جلسه در هفته و هر جلسه 60 دقیقه انجام شد. در ابتدا و انتهای دوره تحقیق، مقادیر سرمی تروپونین T ویژه عضلات اسکلتی (sTnT) به روش الایزا و DNA میتوکندریایی (mtDNA) در سلول های سفید خون به روش Real Time-PCR در سه گروه اندازه‌‌گیری شد. جهت تجزیه تحلیل یافته‌‌ها از آزمون‌‌های آماری t وابسته و آنالیز واریانس یک‌‌راهه همراه با آزمون تعقیبی توکی در سطح 05/0≥p استفاده شد. یافته‌‌ها: تفاوت معنی‌‌داری در مقادیر sTnT بین گروه‌‌های تحقیق وجود نداشت (47/0=p)؛ اما بیان ژنی mtDNA در گروه‌‌های تمرین در چمن (001/0=p) و تمرین در سالن (001/0=p) به طور معنی‌‌داری بالاتر از گروه کنترل بود. همچنین بیان ژن mtDNA در گروه تمرین در چمن به طور معنی‌‌داری بالاتر از گروه تمرین در سالن بود (001/0=p). نتیجه‌‌گیری: اگرچه تمرین پلایومتریک در چمن و سالن هر دو، با افزایش بیان ژنی mtDNA در سلول‌‌های لکوسیت خون همراه هستند؛ اما اثر تمرین در چمن نسبت به تمرین در سالن بر بیان ژنی mtDNA مطلوب‌‌تر است. بنابراین پیشنهاد می گردد به منظور افزایش محتوای DNA بازیکنان فوتیال از تمرینات پلیومتریک در چمن استفاده کنند.

کلیدواژه‌ها

عنوان مقاله [English]

Comparison of the effects of plyometric training on indoor and grass on novel biomarkers of muscle damage in soccer players

نویسندگان [English]

  • Mohammad Ali Keyali Kuskghazi 1
  • Mohammad Faramarzi 2
  • Sanaz Mirzayan Shanjani 3
  • Yaser Kazemzadeh 3

1 Ph.D Student in Exercise Physiology, Department of Exercise Physiology, Islamic Azad University, Islamshahr Branch, Islamshahr, Iran.

2 Professor at Department of Physical Education and Sports Sciences, Faculty of Letters and Humanities, Shahrekord University, Shahrekord, Iran.

3 Assistant Professorat Department of Exercise Physiology, Islamic Azad University, Islamshahr Branch, Islamshahr, Iran.

چکیده [English]

Extended Abstract
Background and Aim: Football has become one of the most popular sports worldwide, attracting millions of fans (1, 2). Muscle damage following a football match presents a significant challenge for players due to the high metabolic demands and physical nature of the game.  (3). Disturbances in the oxidant-antioxidant system following exercise can lead to skeletal muscle damage, tropomyosin disruption , increased serum levels of muscle troponin T (sTNT), and damage to mitochondrial DNA (mtDNA) (4-8). However, focusing on training-related injuries across different levels has become a challenge for researchers. When comparing the impact of plyometric exercises at various levels on physical performance and fitness, conflicting results have been reported (10, 14, 15). Due to the limited information in this field, this study aimed to compare the effects of eight weeks of plyometric training on grass versus indoor surfaces, with respect to markers of muscle damage in soccer players.
Materials and Methods: In this semi-experimental study, 36 soccer players from the first and second leagues of the Youth and Omid Kashiri leagues (average age 20.94 ± 2.81 years) were selected. The participants were randomly divided into three groups: (1) plyometric training on grass, (2) plyometric training in a gym, and (3) a control group. The control group followed their regular exercises under the supervision of a coach, while the two experimental groups performed two additional plyometric training sessions per week alongside their regular training. The plyometric program lasted for eight weeks, with each session lasting 60 minutes. The exercises focused on increasing strength and enhancing explosive power through jumping movements, targeting the hip and leg muscles. Specific exercises included vertical jumps for maximum height, jumps emphasizing leg speed, and deep jumps from varying heights on both hard and soft surfaces.
To measure serum sTnT, an ELISA kit from Casabio (economic code CSB-EL024015RA) with a sensitivity of 0.97 ng/ml was used. For mtDNA analysis, the quantitative real-time PCR method was employed. Data were analyzed using paired sample t-test and one-way ANOVA, followed by Tukey’s post-hoc test, with a significance level set at p≤0.05.
Findings: No significant differences were observed in serum sTnT levels between the groups. However, mtDNA levels were significantly higher in both the grass (p=0.001) and indoor (p=0.001) training groups compared to the control group. Additionally, mtDNA values were significantly higher in the grass training group compared to the indoor training group (p=0.001) (See Figure 1).
Conclusion: The results suggest that muscle damage following intense training can serve as a catalyst for beneficial adaptations, leading to enhanced mitochondrial biogenesis and improved antioxidant function in the long term. While plyometric training in both indoor and grass environments results in increased mtDNA expression in blood leukocytes, training on grass appears to be more effective. Therefore, it is recommended that soccer players incorporate plyometric exercises on grass to enhance mitochondrial content.
Ethical Considerations
All ethical guidelines were strictly followed in accordance with the Biomedical Research Monitoring Committee of Islamic Azad University, Islamshahr Branch.
Compliance with ethical guideline
Informed consent was obtained from all participants after providing them with comprehensive details about the research process, including its potential risks and benefits.
Funding
The authors declare that no financial support was received from any organization.
Conflicts of interest
The authors report no conflicts of interest in relation to this manuscript.

کلیدواژه‌ها [English]

  • Exercise training
  • sTnT
  • mtDNA
  • Soccer players
1. Martins F, França C, Marques A, Iglésias B, Sarmento H, Henriques R, et al. Sports injuries of a portuguese professional football team during three consecutive seasons. International Journal of Environmental Research and Public Health. 2022;19(19):12582.  https://doi.org/10.3390/ijerph191912582
2. Mohtasham HM, Shahrbanian S, Khoshroo F. Epidemiology and history of knee injury and its impact on activity limitation among football premier league professional referees. Journal of Injury and Violence Research. 2018;10(1):45. https://doi.org/10.5249/jivr.v10i1.963
3. Mancini A, Vitucci D, Randers M, Schmidt J, Hagman M, Andersen T, et al. Lifelong football training: effects on autophagy and healthy longevity promotion. Frontiers in Physiology. 2019.  00132 . https://doi.org/10.3389/fphys.2019.00132
4. Nalçakan R, Nalçakan M, Var A, Taneli F, Ulman C, Güvenç Y, et al. Acute oxidative stress and antioxidant status responses following an American football match. The Journal of Sports Medicine and Physical Fitness. 2011;51(3):533-9. https://pubmed.ncbi.nlm.nih.gov/21904294/
5. Hagman M, Fristrup B, Michelin R, Krustrup P, Asghar M. Football and team handball training postpone cellular aging in women. Scientific Reports. 2021;11(1):11733. https://doi.org/10.21203/rs.3.rs-275962/v1 
6. Busquets-Cortés C, Capó X, Martorell M, Tur JA, Sureda A, Pons A. Training and acute exercise modulates mitochondrial dynamics in football players’ blood mononuclear cells. European Journal of Applied Physiology. 2017;117:1977-87. https://doi.org/10.1007/s00394-014-0683-2
7. Rasmussen M, Jin J-P. Troponin variants as markers of skeletal muscle health and diseases. Frontiers in Physiology. 2021;12:747214. https://doi.org/ 10.3389/fphys.2021.747214
8. Shi M, Dong Z, Zhao K, He X, Sun Y, Ren J, et al. Novel insights into exhaustive exercise-induced myocardial injury: Focusing on mitochondrial quality control. Frontiers in Cardiovascular Medicine. 2022;9:1015639. https://doi.org/10.3389/fcvm.2022.1015639
9. Mirzaei B, Salami F, Rahmani-Nia F, Jafari A, Houshmand M, Shafa Shariat Panahi M, et al. Does aerobic exercises induce mtDNA mutation in human blood leucocytes? South African Journal for Research in Sport, Physical Education and Recreation. 2010;32(1):99-106. https://doi.org/10.4314/sajrs.v32i1.54103
10. Impellizzeri FM, Rampinini E, Castagna C, Martino F, Fiorini S, Wisloff U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. British Journal of Sports Medicine. 2008;42(1):42-6. https://doi.org/10.1136/bjsm.2007.038497
11. Chimera NJ, Swanik KA, Swanik CB, Straub SJ. Effects of plyometric training on muscle-activation strategies and performance in female athletes. Journal of Athletic Training. 2004;39(1):24. https://pmc.ncbi.nlm.nih.gov/articles/PMC385258/
12. Momeni S, Barati A, Letafatkar A, Jamshidi A, Hovanlo F. The effects of plyometric training on performance and the feed-forward activation of calf muscles in active females with functional ankle instability in single leg drop landing. Journal of Ilam University of Medical Sciences. 2017;25(2):42-54. [In Persian]. https://doi.org/10.29252/sjimu.25.2.42
13. Voloshina AS, Kuo AD, Daley MA, Ferris DP. Biomechanics and energetics of walking on uneven terrain. Journal of Experimental Biology. 2013;216(21):3963-70.  https://doi.org/10.1242/jeb.081711
14. Bonavolontà V, Carvutto R, Di Gioia A, De Candia M. Plyometric training on sand versus grass: Effects on sprinting, jumping, agility and balance in soccer players. Journal of Functional Morphology and Kinesiology. 2021;7(17): 1-15. https://doi.org/10.14198/jhse.2021.16.proc3.27
15. Ozen G, Atar O, Koc H. The Effects of A 6-Week Plyometric Training Programme on Sand Versus Wooden Parquet Surfaces on the Physical Performance Parameters of Well-Trained Young Basketball Players. Montenegrin Journal of Sports Science & Medicine. 2020;9(1). https://doi.org/10.26773/mjssm.200304
16. Liu W, Kuang H, Xia Y, Pope Z C, Wang Z, Tang C, Yin D. Regular aerobic exercise‐ameliorated troponin I carbonylation to mitigate aged rat soleus muscle functional recession. Experiment Physiol, 2019;104(5): 715-728.‏ https://doi.org/10.1113/ep087564
17. Shadmehri S, Shabani M, Daryanoosh F, Sherafati Moghadam M. The effect of eight weeks aerobic exercise on troponin T and metallothionein levels of cardiac tissue in healthy male rats. Journal of Physical Activity and Hormones, 2018; 2(1): 47-60.‏
18. Maciejczyk M, Błyszczuk R, Drwal A, Nowak B, Strzała M. Effects of short-term plyometric training on agility, jump and repeated sprint performance in female soccer players. International Journal of Environmental Research and Public Health. 2021;18(5):2274. https://doi.org/10.3390/ijerph18052274
19. Kordi MR, Khodayari B, Gaeini AA, Reza N. The comparison of three exercise protocols on specific biochemical markers of cardiac cells in overweight men. Journal of Applied Exercise Physiology. 2018;13(26):41-54. [In persian]. https://doi.org/10.22080/jaep.2017.1675
20. Abreu EL, Vance A, Cheng A-L, Brotto M. Musculoskeletal biomarkers response to exercise in older adults. Frontiers in Aging. 2022;3:867137.  https://doi.org/10.3389/fragi.2022.867137
21. Abreu EL, Cheng A-L, Kelly PJ, Chertoff K, Brotto L, Griffith E, et al. Skeletal muscle troponin as a novel biomarker to enhance assessment of the impact of strength training on fall prevention in the older adults. Nursing Research. 2014;63(2):75-82. https://doi.org/10.1097/nnr.0000000000000018
22. Elmer SJ. Fatigue during multijoint exercise: Biomechanical central, peripheral, and age-related aspects: The University of Utah; 2011.
23. Qi Z, He J, Zhang Y, Shao Y, Ding S. Exercise training attenuates oxidative stress and decreases p53 protein content in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. Free Radical Biology and Medicine. 2011;50(7):794-800. https://doi.org/10.1016/j.freeradbiomed.2010.12.022
24. Jafari A, Hosseinpourfaizi M, Houshmand M, Ravasi A. Effect of aerobic exercise training on mtDNA deletion in soleus muscle of trained and untrained Wistar rats. British Journal of Sports Medicine. 2005;39(8):517-20. https://doi.org/10.1136/bjsm.2004.014068
25. Mirzaei B, Salami F, Rahmanian F, Jafari A, Houshmand M, Shafa M. Correlation between lactate and mt DNA deletion in blood lekocites after an exhoustive aeirobic exercise. Harkat. 2005;(14):21-9. [In Persian].