نوع مقاله : مقاله پژوهشی
نویسندگان
1 کارشناسی ارشد فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه پیام نور، البرز، ایران.
2 استادیار گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه پیام نور، تهران، ایران.
چکیده
زمینه و هدف: فرآیند توسعه عروق جدید، شامل تحریک رشد، مهاجرت و تثبیت عروق جدید میشود که به شدت تحت تاثیر عوامل مختلف تحریککننده و مهارکننده، مانند ترومبوسپوندین-2 (TSP-2) و عامل رشد تغییرشکل دهنده - بتا (TGF-β) قرار میگیرد. هدف از این مطالعه، مقایسه اثر هشت هفته روشهای مختلف تمرین هوازی بر بیان ژنهای آنژیوستاتیک TSP-2 و TGF-β بافت چربی زیرجلدی موشهای صحرایی بود. روش تحقیق: در این پژوهش تجربی، ۳۲ سر موش صحرایی نر ویستار با میانگین وزن 237 گرم به صورت تصادفی به چهار گروه (هشت سر در هر گروه) شامل گروههای شم، تمرین با شدت بالا (HIT)، تمرین با شدت متوسط (MIT) و تمرین تناوبی با شدت بالا (HIIT) تقسیم شدند. پروتکلهای تمرین شامل دویدن روی نوارگردان به مدت هشت هفته با شدتها و مدت های مختلف بود. اندازهگیری بیان ژنها با روش RT-PCR صورت گرفت. دادههای حاصل با آزمون های تحلیل واریانس یکراهه و توکی، در سطح معنی داری 05/0≥p تحلیل شدند. یافتهها: هر سه شیوه تمرینی، بیان TGF-β را در مقایسه با گروه شم، به طور معنی داری کاهش داد؛ اما تفاوت اثر معنی داری بین شیوههای تمرینی مشاهده نشد. با این حال، تنها پروتکلهای HIT و MIT باعث کاهش معنی دار بیان TSP-2 در مقایسه با گروه شم شدند و HIT در مقایسه با پروتکل HIIT، کاهش بیشتری در بیان TSP-2 ایجاد کرد. نتیجهگیری: احتمالا تمرینات هوازی، به ویژه HIT با شدت و مدت مشخص، از طریق تاثیر بر بیان ژنهای آنژیوستاتیک در بهبود خونرسانی به بافت چربی و متعاقبا کاهش توده چربی، موثر هستند.
کلیدواژهها
عنوان مقاله [English]
Comparison of the effect of eight weeks of different aerobic training methods on the expression of angiostatic genes TSP-2 and TGF-β in the subcutaneous adipose tissue of rats
نویسندگان [English]
- Zohreh Yaghoubi 1
- Saeed Naghibi 2
- Maryam Vatandoust 2
1 MSc of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Payame Noor University, Alborz, Iran.
2 Assistant Professor at Exercise Physiology Department, Faculty of Physical Education and Sport Sciences, Payame Noor University, Tehran, Iran.
چکیده [English]
Background and Aim: The development of new blood vessels involves the stimulation of growth, migration, and stabilization, which is influenced by various stimulating and inhibiting factors such as Thrombospondin-2 (TSP-2) and transforming growth factor-beta (TGF-β). This study aimed to compare the effect of eight weeks of different aerobic training methods on the expression of TSP-2 and TGF-β genes in subcutaneous adipose tissue of rats. Materials and Methods: The study conducted an experimental research on 32 male Wistar rats to investigate the effects of different training protocols on gene expression. The rats were divided into four groups (n=8): scheme, high-intensity training (HIT), moderate-intensity training (MIT), and high-intensity interval training (HIIT). The training protocols involved treadmill running for eight weeks, with varying intensities and durations for each group. Gene expression was measured by RT-PCR method. The data were analyzed with one-way ANOVA and Tukey’s tests at a significance level of p≤0.05. Results: The results of the study show that all three training methods led to a significant reduction in TGF-β expression compared to the scheme group. However, no significant difference was observed between training methods. It was also found that only the HIT and MIT methods caused a significant decrease in TSP-2 expression compared to the scheme group, and that HIT could significantly reduce the expression of TSP-2 compared to the HIIT protocol. Conclusion: In conclusion, it is suggested that aerobic exercises, particularly HIT with specific intensity and duration, may be effective in improving blood supply to fat tissue and subsequently reducing fat mass through their impact on the expression of angiostatic genes.
کلیدواژهها [English]
- Exercise training
- Transforming growth factor-beta
- Thrombospondin-2
- Angiogenesis
- Adipose tissue
Amano, K., Matsubara, H., Iba, O., Okigaki, M., Fujiyama, S., Imada, T., & Yokoyama, M. (2003). Enhancement of ischemia-induced angiogenesis by eNOS overexpression. Hypertension, 41(1), 156-162. http://dx.doi.org/10.1161/01.hyp.0000053552.86367.12
Armstrong, L.C., & Bornstein, P. (2003). Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biology, 22(1), 63-71. http://dx.doi.org/10.1016/s0945-053x(03)00005-2
Baek, K.-W., Kim, S.-J., Kim, B.-G., Jung, Y.-K., Hah, Y.-S., Moon, H.Y. … & Kim, J.-S. (2022). Effects of lifelong spontaneous exercise on skeletal muscle and angiogenesis in super-aged mice. Plos One, 17(8), e0263457. http://dx.doi.org/10.1371/journal.pone.0263457
Bartoli, F., Debant, M., Chuntharpursat-Bon, E., Evans, E.L., Musialowski, K. E., Parsonage, G., … & Bowen, T.S. (2022). Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. The Journal of Clinical Investigation, 132(5). http://dx.doi.org/10.1172/jci141775
Breen, E., Johnson, E., Wagner, H., Tseng, H., Sung, L., & Wagner, P. (1996). Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. Journal of Applied Physiology, 81(1), 355-361. http://dx.doi.org/10.1152/jappl.1996.81.1.355
Brown, M., & Hudlicka, O. (2003). Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis, 6(1), 1-14. http://dx.doi.org/10.1023/a:1025809808697
Brown, M.D., & Hudlická, O. (2002). Angiogenesis in Skeletal and Cardiac Muscle. Pysiological Reviews, 213-248. Springer. http://dx.doi.org/10.1007/978-1-59259-126-8_14
Chinsomboon, J., Ruas, J., Gupta, R.K., Thom, R., Shoag, J., Rowe, G.C., … & Arany, Z. (2009). The transcriptional coactivator PGC-1α mediates exercise-induced angiogenesis in skeletal muscle. Proceedings of the National Academy of Sciences, 106(50), 21401-21406. http://dx.doi.org/10.1073/pnas.0909131106
Cho, C.-H., Jun Koh, Y., Han, J., Sung, H.-K., Jong Lee, H., Morisada, T., … & Oike, Y. (2007). Angiogenic role of LYVE-1–positive macrophages in adipose tissue. Circulation Research, 100(4), e47-e57. http://dx.doi.org/10.1161/01.res.0000259564.92792.93
Combes, A., Dekerle, J., Webborn, N., Watt, P., Bougault, V., & Daussin, F.N. (2015). Exercise‐induced metabolic fluctuations influence AMPK, p38‐MAPK and Ca MKII phosphorylation in human skeletal muscle. Physiological Reports, 3(9), e12462. http://dx.doi.org/10.14814/phy2.12462
Corvera, S., Solivan-Rivera, J., & Yang Loureiro, Z. (2022). Angiogenesis in adipose tissue and obesity. Angiogenesis, 1-15. http://dx.doi.org/10.1007/s10456-022-09848-3
Czarkowska-Paczek, B., Zendzian-Piotrowska, M., Bartlomiejczyk, I., Przybylski, J., & Gorski, J. (2011). The influence of physical exercise on the generation of TGF-β1, PDGF-AA, and VEGF-A in adipose tissue. European Journal of Applied Physiology, 111(5), 875-881. http://dx.doi.org/10.1007/s00421-010-1693-2
Disanzo, B.L., & You, T. (2014). Effects of exercise training on indicators of adipose tissue angiogenesis and hypoxia in obese rats. Metabolism, 63(4), 452-455. http://dx.doi.org/10.1016/j.metabol.2013.12.004
Frayn, K., & Karpe, F. (2014). Regulation of human subcutaneous adipose tissue blood flow. International Journal of Obesity, 38(8), 1019-1026. http://dx.doi.org/10.1038/ijo.2013.200
Gavin, T.P., & Wagner, P.D. (2001). Effect of short-term exercise training on angiogenic growth factor gene responses in rats. Journal of Applied Physiology, 90(4), 1219-1226. http://dx.doi.org/10.1152/jappl.2001.90.4.1219
Goumans, M.-J., Lebrin, F., & Valdimarsdottir, G. (2003). Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends in Cardiovascular Medicine, 13(7), 301-307. http://dx.doi.org/10.1016/s1050-1738(03)00142-7
Hatano, D., Ogasawara, J., Endoh, S., Sakurai, T., Nomura, S., Kizaki, T., Ohno, H., Komabayashi, T., & Izawa, T. (2011). Effect of exercise training on the density of endothelial cells in the white adipose tissue of rats. Scandinavian Journal of Medicine & Science in Sports, 21(6), e115-e121. http://dx.doi.org/10.1111/j.1600-0838.2010.01176.x
Hoier, B., & Hellsten, Y. (2014). Exercise‐induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation, 21(4), 301-314. http://dx.doi.org/10.1111/micc.12117
Høydal, M.A., Wisløff, U., Kemi, O.J., & Ellingsen, Ø. (2007). Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Preventive Cardiology, 14(6), 753-760. http://dx.doi.org/10.1097/hjr.0b013e3281eacef1
Jäger, S., Handschin, C., St.-Pierre, J., & Spiegelman, B.M. (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proceedings of the National Academy of Sciences, 104(29), 12017-12022. http://dx.doi.org/10.1073/pnas.0705070104
Jain, R.K. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 307(5706), 58-62. http://dx.doi.org/10.1126/science.1104819
Jayedi, A., Soltani, S., Zargar, M.S., Khan, T.A., & Shab-Bidar, S. (2020). Central fatness and risk of all cause mortality: systematic review and dose-response meta-analysis of 72 prospective cohort studies. British Medical Journal, 370. http://dx.doi.org/10.1136/bmj.m3324
Lawler, P.R., & Lawler, J. (2012). Molecular basis for the regulation of angiogenesis by thrombospondin-1 and-2. Cold Spring Harbor Perspectives in Medicine, 2(5), a006627. http://dx.doi.org/10.1101/cshperspect.a006627
Lee, H.J. (2018). Exercise training regulates angiogenic gene expression in white adipose tissue. Journal of Exercise Rehabilitation, 14(1), 16. http://dx.doi.org/10.12965/jer.1836010.005
Leick, L., Hellsten, Y., Fentz, J., Lyngby, S.S., Wojtaszewski, J.F., Hidalgo, J., & Pilegaard, H. (2009). PGC-1α mediates exercise-induced skeletal muscle VEGF expression in mice. American Journal of Physiology-Endocrinology and Metabolism, 297(1), E92-103. http://dx.doi.org/10.1152/ajpendo.00076.2009
Panina, Y.A., Yakimov, A.S., Komleva, Y., Morgun, A.V., Lopatina, O.L., Malinovskaya, N.A., … & Salmina, A.B. (2018). Plasticity of adipose tissue-derived stem cells and regulation of angiogenesis. Frontiers in Physiology, 9, 1656. http://dx.doi.org/10.3389/fphys.2018.01656
Prior, B.M. Yang, H., & Terjung, R.L. (2004). What makes vessels grow with exercise training? Journal of Applied Physiology, 97(3), 1119-1128. http://dx.doi.org/10.1152/japplphysiol.00035.2004
Richardson, R., Wagner, H., Mudaliar, S., Saucedo, E., Henry, R., & Wagner, P. (2000). Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. American Journal of Physiology-Heart and Circulatory Physiology, 279(2), H772-H778. http://dx.doi.org/10.1152/ajpheart.2000.279.2.h772
Rognmo, Ø., Hetland, E., Helgerud, J., Hoff, J., & Slørdahl, S.A. (2004). High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. European Journal of Preventive Cardiology, 11(3), 216-222. http://dx.doi.org/10.1097/01.hjr.0000131677.96762.0c
Rutkowski, J.M., Davis, K.E., & Scherer, P. (2009). Mechanisms of obesity and related pathologies: the macro‐and microcirculation of adipose tissue. The Federation of European Biochemical Societies Journal, 276(20), 5738-5746. http://dx.doi.org/10.1111/j.1742-4658.2009.07303.x
Takahashi, H., & Shibuya, M. (2005). The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clinical Science, 109(3), 227-241. http://dx.doi.org/10.1042/cs20040370
Torok, D.J., Duey, W.J., Bassett Jr, D.R., Howley, E.T., & Mancuso, P. (1995). Cardiovascular responses to exercise in sprinters and distance runners. Medicine and Science in Sports and Exercise, 27(7),1050-1056. http://dx.doi.org/10.1249/00005768-199507000-00014
Van Pelt, D.W., Guth, L.M., & Horowitz, J.F. (2017). Aerobic exercise elevates markers of angiogenesis and macrophage IL-6 gene expression in the subcutaneous adipose tissue of overweight-to-obese adults. Journal of Applied Physiology, 123(5), 1150-1159. http://dx.doi.org/10.1152/japplphysiol.00614.2017
Ziada, A., Hudlicka, O., & Tyler, K. (1989). The effect of long-term administration of α1-blocker prazosin on capillary density in cardiac and skeletal muscle. Pflügers Archiv, 415(3), 355-360. http://dx.doi.org/10.1007/bf00370888