نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری آسیب شناسی و حرکات اصلاحی/ دانشکده تربیت بدنی و علوم ورزشی/ دانشگاه اصفهان/ اصفهان

2 دانشیار گروه فیزیولوژی ورزشی/ دانشکده تربیت بدنی و علوم ورزشی/ دانشگاه اصفهان/ اصفهان

3 دانشجوی دکتری فیزیولوژی ورزشی/ دانشکده تربیت بدنی و علوم ورزشی/ دانشگاه اصفهان/ اصفهان

4 کارشناسی ارشد تربیت بدنی/ دانشکده تربیت بدنی و علوم ورزشی/ دانشگاه اصفهان/ اصفهان

5 کارشناسی ارشد تربیت بدنی/ سازمان آموزش و پرورش خراسان جنوبی/ بیرجند

چکیده

زمینه و هدف: آزمون وینگیت شامل 30 ثانیه تمرین فوق بیشینه روی یک دوچرخه کارسنج است که میزان بار اعمال شده براساس وزن فرد تعیین می شود. اندازه بار علاوه بر وزن آزمودنی به پارامترهایی از جمله سن و جنسیت نیز وابسته است. عاوه بر پارامترهای نامبرده شده، پارامتر هایی ازقبیل میزان سطح ورزشی، درصد چربی زیر پوستی و سطح مصرف دخانیات آزمودنی نیز در تعیین اندازه بار تاثیرگذار می باشند. هدف از پژوهش حاضر ارائه یک روش هوشمند با استفاده از تکنیک داده کاوی برای تعیین اندازه بار در آزمون وینگیت با توجه به تمامی پارامتر های مداخله گر می باشد. روش تحقیق: آزمون وینگیت به وسیله چرخ کارسنج(مونارک 894) سه نوبت روی 30 نفر داوطلب مرد ازدانشجویان دانشگاه اصفهان انجام شد. در این تحقیق از نرم افزار راپیدماینر برای تجزیه و تحلیل داده ها استفاده شده است. یافته ها: براساس الگوریتم های داده کاوی ویژگی هایی که بیشترین تاثیر را به ترتیب در پیش بینی میزان بار داشته اند شامل: قد، وزن، سن، ورزش، میزان چربی زیرپوستی خاصره ای و میزان چربی زیر پوستی شکمی می باشد. نتیجه گیری: بر اساس نتایج به دست آمده از این تحقیق، تکنیک داده کاوی توانسته است اندازه بار را چه برای داد ههای آموزشی و چه برای داد ههای آزمایشی پیش بینی کند. بنابراین با استفاده از تکنیک مورد نظر می توان اندازه بار را برای افراد بطور دقیق پیش بینی کرد. نرم افزار حاصل از این تحقیق درحال ویرایش نهایی برای ارائه به بازار است.

کلیدواژه‌ها

عنوان مقاله [English]

The load Intelligent determination for the Wingate test by the data mining

نویسندگان [English]

  • Hamed Arghavani 1
  • Seyed Mohammad Marandi 2
  • Volga Hovsepian 3
  • Ania Hovsepian 4
  • Hossein Zahrayi 5

1

2

3

4

5

چکیده [English]

Background and Aim: Wingate test involves a 30 seconds maximal exercise on cycling ergometer while the load is selected according to the body weight. Beside the body weight, the load is also related to other parameters such as age and gender. Also other parameters such as level of fitness, body mass index smoking of the exercisers can be affecting in the load selection for the test. This study suggests an intelligent load selection method for Wingate test using artificial neural networks according to all the affective variables. Materials and Methods: In this study 30 male students of Isfahan university volunteered to perform Wingate anaerobic power test on cycling ergometer (Monark 894). Moreover, the Rapid miner software was used for prediction of optimal workload according to characteristic of subjects. Results: According to the data mining algorithms, the Height, weight, age, exercise, pelvic fat and abdominal fat indicated the greatest impact on prediction of optimal workload:. Conclusion: According to the results, neural network was able to predict the amount of load for both train and test data with %93 and %90 confidence limits, respectively. This network can be used to delicately determine the load for anyone.

کلیدواژه‌ها [English]

  • Wingate test
  • Peak power
  • Loading
  • Data mining
1. Ardel, W., ,Katch, F., Katch, V. 2007. Exercise Physiology :Energy ,Nutrition and Human Performance . 6thEdition . Philadelphia, PA:Lippincott Williams and Wikines.
2. Baker, U., Heath, E., smith, D. 2011. Development of Wingate anaerobic test norms for highly trained women .Journal of Exercise physiology online, vol. 14, no. 2, pp. 68-79.
3. Bar, O. 1987. The Wingate anaerobic test. An update on methodology, reliability and validity. Sport Medicine,vol. 4, pp. 381-94. 4. Brooks, G., Fahay, T., Baldwin, K. 2005. Exercise physiology, human bioenergetics and its application. 4 th Edition, Boston,MA:McGraw Hill .
5. Bulbulian, R., Jeong, J., Murphy, M. 1996. Comparison of anaerobic and critical power test in males and females. Medical Science sports Exercise. Vol. 28, pp. 1336-41.
6. Dotan, R., Bar, O. 1983.Load optimization for the Wingate anaerobic test. Journal of Physiology. vol. 51, pp. 409-17.
7. Fabian, N., Adams, K., Durham, M., Gomez, S., et al. 2001. Comparison of power production between the power and Wingate 30 second power tests. Medical Science Sports Exercise, vol.33, pp. 25.
8. Hawleyy, J., Williams, M., Hamling, G., Anderson, G. 1988. Effects of a task. A specific warm up on anaerobic power. World Applied Science Journal, vol. 23, no. 4, pp. 233-6.
9. Heyward,V., wagner, D. 2004. Applied Body CompositionAssessments. 2nd Edition .Champaign, IL Human Kinetics.
10. Inbar, O., Bar, O., Skiner J.1996. The Wingate anaerobic test. Human Kinetics.
11. Katz, A., Sahlin, K., Henriksson, J. 1986. Muscle ATP turnover rate during isometric contraction in humans. Journal of Physiology, vol. 60 no. 6, pp. 39-42.
12. Lu, K., Quach, B., Chung, P., Seoul, H. 2008. Optimal workload of Wingate test. A comparison between normal and minor over fat young adults. The Open Sports Sciences Journal, vol. 1, pp. 20-23.
13. Maud, P., shults, B.1986. Relationship between and normative data for three performance measures of anaerobic power. In Proceedings of the VIII commonwealth and international conference on sport physical education, recreation and health . Edited by
Thomas R , Watkins J , Borms J, Cambrage GB university . Press 284-89.
14. Nebelsick, a., Gullet, L., Housh, T., Hanji, F. 1988. A comparison between methods of measuring anaerobic work capacity. Ergonomics, vol. 31, pp. 1413-9.
15. Nieman, D. 2007. Exercise testing and priscription: A Health–relative Approach. 6th Edition Boston MA, McGraw Hill.
16. Ozay, Y. 2004. Load optimization on Wingate test using artificial neural networks. Journal of Electrical and Eelectronics Enginiaring, vol. 4, no. 2, pp. 55-59.
17. Ozkaya, O., Colakoqlu, M., Kuzucu, E., Kavari, D. 2012. Peak, mid and low power in Wingate test. Journal of American Science, vol.26, no. 5, pp. 13-2.
18. Patton, J., duggan, A.1987. An evaluation of test of anaerobic power. Environment Medicine, vol. 58, pp. 237-42.
19. Patton, J., Morphy, M., Frederick, F. 1985. Maximal power outputs during the Wingate anaerobic test. Journal of Sports Medicine,vol. 6, pp. 82-5.
20. Sands, W., Neal, J., Ochi, M.T., Bolan, S. 2004. Comparison of the Wingate and anaerobic tests. World of Science Journal, vol. 18,pp. 810-15.
21. Siri, W.E. 1961. Body composition from fluid spaces and density In: Techniques for measuring Body composition. Edited by Brozek J.Washington DC. National Academy of Sciences, pp. 223-234.
22. Stauffer, K., Nagele, E., Goss, F., et al . 2010. Assessment of anaerobic power in female division collegiate basketball players.Journal of Exercise Physiology, vol. 13, no. 1, pp. 1-9.
23. Tharp, G., Newhouse, R., Uffelman, L., Fabrian, F. 1985. Comparison of sprint and run times with performance on the Wingate anaerobic test. Journal of Training Quality, vol. 56, pp. 73-6.
24. Van Praagh, E., Franca, N. 1998.Pediatric anaerobic performance. Illinois, Human Kinethics . 155-89.
25. Zupan, M.F., Arara, A., Dawson, L. 2009. Wingate anaerobic test peak power and anaerobic capacity for men and women intercollegiate athletes. Journal of American science, vol. 23, pp. 2598-04.