نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه بیرجند، بیرجند، ایران.
2 استاد فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه بیرجند، بیرجند، ایران.
3 استاد فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه گیلان، رشت، ایران.
چکیده
زمینه و هدف: تمرین مقاومتی (RT) نقش مهمی در افزایش حجم و قدرت عضلانی دارد. تحقیق حاضر با هدف مقایسه اثر تمرین مقاومتی حجم آلمانی تعدیل شده (MGVRT)، تمرین مقاومتی شدید (HIRT) و تمرین مقاومتی غیرخطی (NLRT) بر سطوح سرمی میوستاتین (Mstn)، فولیستاتین (FLS) و عامل هستهای کاپا B (NF-κB) و حجم و قدرت عضلانی در مردان ورزشکار انجام شد. روش تحقیق: تعداد 40 مرد جوان رشته بدنسازی بهطور تصادفی در گروههای مساوی شامل MGVRT، HIRT، NLRT و کنترل قرار گرفتند. پروتکلهای تمرینی بهمدت هشت هفته (سه جلسه در هفته) انجام شدند. متغیرهای بیوشیمیایی منتخب و حجم و قدرت عضلانی، قبل و 48 ساعت پس از آخرین جلسه تمرین اندازهگیری شد. آزمونهای تحلیل کوواریانس، تحلیل واریانس با اندازهگیری تکراری، کروسکال-والیس و یو من- ویتنی جهت تحلیلهای آماری در سطح معنیداری 05/0 ≥p مورد استفاده قرار گرفتند. یافتهها: سطوح سرمی Mstn و FLS در هر سه گروه تجربی در مقایسه با گروه کنترل بهترتیب کاهش و افزایش معنیداری یافت. همچنین، سطح NF-κB در گروههای MGVRT وHIRT بهطور معنیداری از گروه NLRT و کنترل پایینتر بود. علاوه بر این، محیط بازو و ران و قدرت عضلانی در حرکات پرس سینه و اسکوات در هر سه گروه تجربی در مقایسه با گروه کنترل، بهطور معنیداری افزایش یافت؛ بهگونهای که افزایش محیط بازو در گروه MGVRT در مقایسه با گروههای HIRT و NLRT و قدرت عضلانی در گروه HIRT در مقایسه با گروههای MGVRT و NLRT؛ بهطور معنیداری بیشتر بود. نتیجهگیری: هر سه پروتکل RT به بهبود شاخصهای بیوشیمیایی، آنتروپومتریکی و عملکردی در مردان ورزشکار منجر شد، اما پروتکلهای MGVRT و HIRT به ترتیب افزایش بیشتری در هایپرتروفی و حداکثر قدرت عضلانی در پی داشت. با این وجود به مطالعات بیشتر در زمینه ارتباط پروتکلهای RT، با حجم و قدرت عضلانی و شاخصهای بیوشیمیایی مرتبط با آنها، مورد نیاز است.
کلیدواژهها
عنوان مقاله [English]
Comparison of effect of modified German volume, high-intensity, and non-linear resistance training on some biochemical, anthropometric, and functional indices related to muscle strength in male athletes
نویسندگان [English]
- Amir Mohtashami 1
- Marziyeh Saghebjoo 2
- Farhad Rahmani-nia 3
1 . Ph.D. Student of Exercise Physiology, Department of Exercise Physiology, University of Birjand, Birjand, Iran
2 Professor of Exercise Physiology, Department of Exercise Physiology, University of Birjand, Birjand, Iran
3 Professor of Exercise Physiology, Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
چکیده [English]
Background and Aim: Resistance training (RT) plays a major role in developing muscle mass and strength. This study aimed to compare the effect of eight weeks of modified German volume resistance training (MGVRT), high-intensity resistance training (HIRT), and non-linear resistance training (NLRT) on the serum levels of myostatin (Mstn), follistatin (FLS), nuclear factor kappa B (NF-κB), and muscle mass and strength in male athletes. Materials and Methods: Forty young men bodybuilders were randomly assigned into equal groups, including MGVRT, HIRT, NLRT, and control. Training protocols were performed for eight weeks (three times a week). Selected biochemical variables, muscle mass, and strength were measured before and 48 hours after the last training session. For statistical analyses the analysis of covariance, repeated-measures analysis of variance, Kruskal-Wallis, and Mann-Whitney U tests were and significance level was set as p≤0.05. Results: The Mstn and FLS protein levels significantly decreased and increased, respectively in all three experimental groups compared with the control group. Moreover, the NF-κB level was significantly lower in the MGVRT and HIRT groups than NLRT and control groups. Furthermore, the arm and thigh circumference and muscular strength in the chest press and squat movements significantly increased in all three experimental groups as compared with the control group where the increase in arm circumference in the MGVRT group was significantly higher than in the HIRT and NLRT groups and as the same the muscular strength in the HIRT group was significantly higher than in the MGVRT and NLRT groups. Conclusion: All three RT protocols lead to improve biochemical, anthropometric, and functional indices in male athletes, but the MGVRT and HIRT protocols led to more increase in muscular hypertrophy and maximum strength, respectively. However, further studies are needed on the relationship between RT protocols with muscle mass and strength, and the biochemical parameters associated with them.
کلیدواژهها [English]
- Resistance training
- Training volume
- Training intensity
- Muscle hypertrophy
- Muscle strength
Amirthalingam, T., Mavros, Y., Wilson, G.C., Clarke, J.L., Mitchell, L., & Hackett, D.A. (2017). Effects of a modified German volume training program on muscular hypertrophy and strength. The Journal of Strength & Conditioning Research, 31(11), 3109-3119. http://dx.doi.org/10.1519/jsc.0000000000001747
Aoki, M.S., Soares, A.G., Miyabara, E.H., Baptista, I.L., & Moriscot, A.S. (2009). Expression of genes related to myostatin signaling during rat skeletal muscle longitudinal growth. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 40(6), 992-999. http://dx.doi.org/10.1002/mus.21426
Arsura, M., Panta, G.R., Bilyeu, J.D., Cavin, L.G., Sovak, M.A., Oliver, A.A., & Sonenshein, G.E. (2003). Transient activation of NF-κB through a TAK1/IKK kinase pathway by TGF-β1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene, 22(3), 412-425. http://dx.doi.org/10.1038/sj.onc.1206132
Baker, D., Wilson, G., & Carlyon, R. (1994). Periodization: The effect on strength of manipulating volume and intensity. Journal of Strength and Conditioning Research, 8(4), 235-42. http://dx.doi.org/10.1519/00124278-199411000-00006
Bakkar, N. (2008). Molecular mechanisms of NF-kB regulation of skeletal myogenesis. Doctoral Dissertation, The Ohio State University.
Bompa, T., Di Pasquale, M. G., & Cornacchia, L. (2003). Serious strength training. 2th Edition. Human Kinetics.
Brandenburg, J.P., & Docherty, D. (2002). The effects of accentuated eccentric loading on strength, muscle hypertrophy, and neural adaptations in trained individuals. The Journal of Strength & Conditioning Research, 16(1), 25-32. http://dx.doi.org/10.1519/00124278-200202000-00005
Brzycki, M. (1993). Strength testing—predicting a one-rep max from reps-to-fatigue. Journal of Physical Education, Recreation & Dance, 64(1), 88-90. http://dx.doi.org/10.1080/07303084.1993.10606684
Buford, T.W., Rossi, S.J., Smith, D.B., & Warren, A.J. (2007). A comparison of periodization models during nine weeks with equated volume and intensity for strength. Journal of Strength and Conditioning Research, 21(4), 1245–50. http://dx.doi.org/10.1519/00124278-200711000-00045
Cadore, E.L., Pinto, R.S., Lhullier, F.L.R., Correa, C.S., Alberton, C.L., Pinto, S.S., ... & Kruel, L.F.M. (2010). Physiological effects of concurrent training in elderly men. International Journal of Sports Medicine, 31(10), 689-697. http://dx.doi.org/10.1055/s-0030-1261895
Carnac, G., Vernus, B., & Bonnieu, A. (2007). Myostatin in the pathophysiology of skeletal muscle. Current Genomics, 8(7), 415-422. http://dx.doi.org/10.2174/138920207783591672
Cash, J.N., Rejon, C.A., McPherron, A.C., Bernard, D.J., & Thompson, T.B. (2009). The structure of myostatin: follistatin 288: insights into receptor utilization and heparin binding. The EMBO Journal, 28(17), 2662-2676. http://dx.doi.org/10.1038/emboj.2009.205
Dalbo, V.J., Roberts, M.D., Sunderland, K.L., Poole, C.N., Stout, J.R., Beck, T.W., ... & Kerksick, C.M. (2011). Acute loading and aging effects on myostatin pathway biomarkers in human skeletal muscle after three sequential bouts of resistance exercise. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 66(8), 855-865. http://dx.doi.org/10.1093/gerona/glr091
De Hoyos, D., Abe, T., Garzarella, L., Hass, C.J., Nordman, M., & Pollock, M. (1998). Effects of 6 months of high-or low-volume resistance training on muscular strength and endurance. Medicine & Science in Sports & Exercise, 30(5), 165.http://dx.doi.org/10.1097/00005768-199805001-00939
Dieli-Conwright, C.M., Spektor, T.M., Rice, J.C., Sattler, F.R., & Schroeder, E.T. (2009). Influence of hormone replacement therapy on eccentric exercise induced myogenic gene expression in post menopausal women. Journal of Applied Physiology, 107(5), 1381-1388. http://dx.doi.org/10.1152/japplphysiol.00590.2009
Durham, W.J., Li, Y.P., Gerken, E., Farid, M., Arbogast, S., Wolfe, R.R., & Reid, M.B. (2004). Fatiguing exercise reduces DNA binding activity of NF-κB in skeletal muscle nuclei. Journal of Applied Physiology, 97(5), 1740-1745. http://dx.doi.org/10.1152/japplphysiol.00088.2004
Favier, F.B., Benoit, H., & Freyssenet, D. (2008). Cellular and molecular events controlling skeletal muscle mass in response to altered use. Pflügers Archiv-European Journal of Physiology, 456(3), 587-600. http://dx.doi.org/10.1007/s00424-007-0423-z
Fleck, S.J., & Kraemer, W. (2014). Designing resistance training programs. 4th Edition. Human Kinetics.
Frisancho, A.R. (1974). Triceps skin fold and upper arm muscle size norms for assessment of nutritional status. The American Journal of Clinical Nutrition, 27(10), 1052-1058. http://dx.doi.org/10.1093/ajcn/27.10.1052
Galvão, D.A., & Taaffe, D.R. (2004). Single-vs. Multiple-set resistance training: recent developments in the controversy. The Journal of Strength & Conditioning Research, 18(3), 660-667. http://dx.doi.org/10.1519/00124278-200408000-00049
Grgic, J., Mikulic, P., Podnar, H., & Pedisic, Z. (2017). Effects of linear and daily undulating periodized resistance training programs on measures of muscle hypertrophy: a systematic review and meta-analysis. Peer Journal, 5, e3695. http://dx.doi.org/10.7717/peerj.3695
Hackett, D.A., Amirthalingam, T., Mitchell, L., Mavros, Y., Wilson, G.C., & Halaki, M. (2018). Effects of a 12-week modified German volume training program on muscle strength and hypertrophy—a pilot study. Sports, 6(1), 7. http://dx.doi.org/10.3390/sports6010007
Häkkinen, K., Alen, M., & Komi, P.V. (1985). Changes in isometric force‐and relaxation‐time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiologica Scandinavica, 125(4), 573-585. http://dx.doi.org/10.1111/j.1748-1716.1985.tb07759.x
Han, S.H., Yea, S.S., Jeon, Y.J., Yang, K.H., & Kaminski, N.E. (1998). Transforming growth factor-beta 1 (TGF-β1) promotes IL-2 mRNA expression through the up-regulation of NF-κB, AP-1 and NF-AT in EL4 cells. Journal of Pharmacology and Experimental Therapeutics, 287(3), 1105-1112. PMID: 9864299
Hansen, J., Brandt, C., Nielsen, A.R., Hojman, P., Whitham, M., Febbraio, M.A., ... & Plomgaard, P. (2011). Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology, 152(1), 164-171. http://dx.doi.org/10.1210/en.2010-0868
Hass, C.J., Garzarella, L., De Hoyos, D., & Pollock, M.L. (2000). Single versus multiple sets in long-term recreational weightlifters. Medicine & Science in Sports & Exercise, 32(1), 235-242. http://dx.doi.org/10.1097/00005768-200001000-00035
Henry, T. (2011). Resistance training for judo: functional strength training concepts and principles. Strength & Conditioning Journal, 33(6), 40-49. http://dx.doi.org/10.1519/ssc.0b013e31823a6675
Hill, J.J., Qiu, Y., Hewick, R.M., & Wolfman, N.M. (2003). Regulation of myostatin in vivo by growth and differentiation factor-associated serum protein-1: a novel protein with protease inhibitor and follistatin domains. Molecular Endocrinology, 17(6), 1144-1154. http://dx.doi.org/10.1210/me.2002-0366
Hoffman, J.R., Ratamess, N.A., Klatt, M., Faigenbaum, A.D., Ross, R.E., Tranchina, N.M., ... & Kraemer, W.J. (2009). Comparison between different off-season resistance training programs in Division III American College football players. The Journal of Strength & Conditioning Research, 23(1), 11-19. http://dx.doi.org/10.1519/jsc.0b013e3181876a78
Housh, D.J., Housh, T.J., Weir, J.P., Weir, L.L., Johnson, G.O., & Stout, J.R. (1995). Anthropometric estimation of thigh muscle cross-sectional area. Medicine & Science in Sports & Exercise, 27(5), 784-791. http://dx.doi.org/10.1249/00005768-199505000-00023
Hulmi, J.J., Ahtiainen, J.P., Kaasalainen, T., Pollanen, E., Hakkinen, K., Alen, M., … & Mero, A.A. (2007). Postexercise myostatin and activin IIb mRNA levels: effects of strength training. Medicine & Science in Sports & Exercise, 39(2), 289-297. http://dx.doi.org/10.1249/01.mss.0000241650.15006.6e
Jensky, N.E., Sims, J.K., Dieli-Conwright, C.M., Sattler, F.R., Rice, J.C., & Schroeder, E.T. (2010). Exercise does not influence myostatin and follistatin mRNA expression in young women. Journal of Strength and Conditioning Research, 24(2), 522-530. http://dx.doi.org/10.1519/jsc.0b013e3181c8664f
Karin, M. (2009). NF-κB as a critical link between inflammation and cancer. Cold Spring Harbor Perspectives in Biology, 1(5), a000141. http://dx.doi.org/10.1101/cshperspect.a000141
Kim, J.S., Cross, J.M., & Bamman, M.M. (2005). Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. American Journal of Physiology-Endocrinology and Metabolism, 288(6), E1110-E1119. http://dx.doi.org/10.1152/ajpendo.00464.2004
Kraemer, W.J., Adams, K., Cafarelli, E., Dudley, G.A., Dooly, C., Feigenbaum, M.S., ... & Triplett-McBride, T. (2002). American college of sports medicine position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 34(2), 364-380. http://dx.doi.org/10.1097/00005768-200202000-00027
Krieger, J.W. (2010). Single vs. multiple sets of resistance exercise for muscle hypertrophy: a meta-analysis. The Journal of Strength & Conditioning Research, 24(4), 1150-1159. http://dx.doi.org/10.1519/jsc.0b013e3181d4d436
Liu, L., Liu, X., Bai, Y., Tang, N., Li, J., Zhang, Y., … & Wei, J. (2018). Neuregulin-1β modulates myogenesis in septic mouse serum-treated C2C12 myotubes in vitro through PPARγ/NF-κB signaling. Molecular Biology Reports, 45(6), 1611-1619. http://dx.doi.org/10.1007/s11033-018-4293-6
Ma, K., Mallidis, C., Artaza, J., Taylor, W., Gonzalez-Cadavid, N., & Bhasin, S. (2001). Characterization of 5′-regulatory region of human myostatin gene: regulation by dexamethasone in vitro. American Journal of Physiology-Endocrinology and Metabolism, 281(6), E1128-E1136. http://dx.doi.org/10.1152/ajpendo.2001.281.6.e1128
Mafi, F., Biglari, S., Afousi, A.G., & Gaeini, A.A. (2019). Improvement in skeletal muscle strength and plasma levels of follistatin and myostatin induced by an 8-week resistance training and epicatechin supplementation in sarcopenic older adults. Journal of Aging and Physical Activity, 27(3), 384-391. http://dx.doi.org/10.1123/japa.2017-0389
Mangine, G.T., Hoffman, J.R., Gonzalez, A.M., Townsend, J.R., Wells, A.J., Jajtner, A.R., … & Stout, J.R. (2015a). The effect of training volume and intensity on improvements in muscular strength and size in resistance‐trained men. Physiological Reports, 3(8), e12472. http://dx.doi.org/10.14814/phy2.12472
Mangine, G.T., Hoffman, J.R., Fukuda, D.H., Stout, J.R., & Ratamess, N. (2015b). Improving muscle strength and size: The importance of training volume, intensity, and status. Kinesiology, 47(2), 131-138. https://hrcak.srce.hr/file/221517
McPherron, A.C., Lawler, A.M., & Lee, S.J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature, 387(6628), 83-90. http://dx.doi.org/10.1038/387083a0
Mero, A.A., Hulmi, J.J., Salmijärvi, H., Katajavuori, M., Haverinen, M., Holviala, J., …, & Selänne, H. (2013). Resistance training induced increase in muscle fiber size in young and older men. European Journal of Applied Physiology, 113(3), 641-650. http://dx.doi.org/10.1007/s00421-012-2466-x
Miranda, F., Simao, R., Rhea, M., Bunker, D., Prestes, J., Leite, R.D., … & Novaes, J. (2011). Effects of linear vs. daily undulatory periodized resistance training on maximal and submaximal strength gains. The Journal of Strength & Conditioning Research, 25(7), 1824-1830. http://dx.doi.org/10.1519/jsc.0b013e3181e7ff75
Moller, A.B., Vendelbo, M.H., Rahbek, S.K., Clasen, B.F., Schjerling, P., Vissing, K., & Jessen, N. (2013). Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals. Pflügers Archiv-European Journal of Physiology, 465(12), 1785-1795. http://dx.doi.org/10.1007/s00424-013-1318-9
Nikseresht, M., Agha-Alinejad, H., Azarbayjani, M.A., & Ebrahim, K. (2014). Effects of nonlinear resistance and aerobic interval training on cytokines and insulin resistance in sedentary men who are obese. The Journal of Strength & Conditioning Research, 28(9), 2560-2568. http://dx.doi.org/10.1519/jsc.0000000000000441
Op den Kamp, C.M., Langen, R.C., Snepvangers, F.J., de Theije, C.C., Schellekens, J.M., Laugs, F., ... & Schols, A.M. (2013). Nuclear transcription factor κB activation and protein turnover adaptations in skeletal muscle of patients with progressive stages of lung cancer cachexia. The American Journal of Clinical Nutrition, 98(3), 738-748. http://dx.doi.org/10.3945/ajcn.113.058388
Otto, R.M., & Carpinelli, R.N. (2006). A critical analysis of the single versus multiple set debate. Journal of Exercise Physiology online, 9(1), 32-57.
Pahl, H.L. (1999). Activators and target genes of Rel/NF-κB transcription factors. Oncogene, 18(49), 6853-6866. http://dx.doi.org/10.1038/sj.onc.1203239
Peterson, M.D., Dodd, D.J., Alvar, B.A., Rhea, M.R., & Favre, M. (2008). Undulation training for development of hierarchical fitness and improved firefighter job performance. The Journal of Strength & Conditioning Research, 22(5), 1683-1695. http://dx.doi.org/10.1519/jsc.0b013e31818215f4
Prestes, J., Frollini, A.B., de Lima, C., Donatto, F.F., Foschini, D., de Cássia Marqueti, R., …, & Fleck, S.J. (2009). Comparison between linear and daily undulating periodized resistance training to increase strength. The Journal of Strength & Conditioning Research, 23(9), 2437-2442. http://dx.doi.org/10.1519/jsc.0b013e3181c03548
Rhea, M.R., Alvar, B.A., Ball, S.D., & Burkett, L.N. (2002a). Three sets of weight training superior to 1 set with equal intensity for eliciting strength. The Journal of Strength & Conditioning Research, 16(4), 525-529. http://dx.doi.org/10.1519/00124278-200211000-00006
Rhea, M.R., Alvar, B.A., & Burkett, L.N. (2002b). Single versus multiple sets for strength: a meta-analysis to address the controversy. Research Quarterly for Exercise and Sport, 73(4), 485-488. http://dx.doi.org/10.1080/02701367.2002.10609050
Rhea, M.R., Ball, S.D., Phillips, W.T., & Burkett, L.N. (2002c). A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. The Journal of Strength & Conditioning Research, 16(2), 250-255. http://dx.doi.org/10.1519/00124278-200205000-00013
Rhea, M.R., & Alderman, B.L. (2004). A meta-analysis of periodized versus nonperiodized strength and power training programs. Research Quarterly for Exercise and Sport, 75(4), 413-422. http://dx.doi.org/10.1080/02701367.2004.10609174
Roth, S.M., Martel, G.F., Ferrell, R.E., Metter, E.J., Hurley, B.F., & Rogers, M.A. (2003). Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Experimental Biology and Medicine, 228(6), 706-709. http://dx.doi.org/10.1177/153537020322800609
Santos, A.R., Lamas, L., Ugrinowitsch, C., Tricoli, V., Miyabara, E.H., Soares, A.G., & Aoki, M.S. (2015). Different resistance-training regimens evoked a similar increase in myostatin inhibitors expression. International Journal of Sports Medicine, 36(9), 761-768. http://dx.doi.org/10.1055/s-0035-1547219
Schlumberger, A., Stec, J., & Schmidtbleicher, D. (2001). Single-vs. multiple-set strength training in women. The Journal of Strength & Conditioning Research, 15(3), 284-289. http://dx.doi.org/10.1519/00124278-200108000-00004
Schoenfeld, B.J., Ogborn, D., & Krieger, J.W. (2017). Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. Journal of Sports Sciences, 35(11), 1073-1082. http://dx.doi.org/10.1080/02640414.2016.1210197
Schoenfeld, B.J., Ratamess, N.A., Peterson, M.D., Contreras, B., Sonmez, G.T., & Alvar, B.A. (2014). Effects of different volume-equated resistance training loading strategies on muscular adaptations in well-trained men. The Journal of Strength & Conditioning Research, 28(10), 2909-2918. http://dx.doi.org/10.1519/jsc.0000000000000480
Schoenfeld, B.J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. The Journal of Strength & Conditioning Research, 24(10), 2857-2872. http://dx.doi.org/10.1519/jsc.0b013e3181e840f3
Schwarzenegger, A., & Dobbins, B. (1998). The new encyclopedia of modern bodybuilding. Simon and Schuster.
Seynnes, O.R., de Boer, M., & Narici, M.V. (2007). Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of Applied Physiology, 102(1), 368-373. http://dx.doi.org/10.1152/japplphysiol.00789.2006
Simão, R., Spineti, J., de Salles, B.F., Matta, T., Fernandes, L., Fleck, S.J.... & Strom-Olsen, H.E. (2012). Comparison between nonlinear and linear periodized resistance training: hypertrophic and strength effects. The Journal of Strength & Conditioning Research, 26(5), 1389-1395. http://dx.doi.org/10.1519/jsc.0b013e318231a659
Tan, B. (1999). Manipulating resistance training program variables to optimize maximum strength in men: a review. The Journal of Strength & Conditioning Research, 13(3), 289-304. http://dx.doi.org/10.1519/00124278-199908000-00019
Vella, L., Caldow, M.K., Larsen, A.E., Tassoni, D., Della Gatta, P.A., Gran, P., … & Cameron-Smith, D. (2012). Resistance exercise increases NF-κB activity in human skeletal muscle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302(6), R667-R673. http://dx.doi.org/10.1152/ajpregu.00336.2011
Walker, K.S., Kambadur, R., Sharma, M., & Smith, H.K. (2004). Resistance training alters plasma myostatin but not IGF-1 in healthy men. Medicine & Science in Sports & Exercise, 36(5), 787-793. http://dx.doi.org/10.1249/01.mss.0000126384.04778.29
Wehling, M., Cai, B., & Tidball, J.G. (2000). Modulation of myostatin expression during modified muscle use. The FASEB Journal, 14(1), 103-110. http://dx.doi.org/10.1096/fasebj.14.1.103
Willoughby, D.S. (2004a). Effects of an alleged myostatin-binding supplement and heavy resistance training on serum myostatin, muscle strength and mass, and body composition. International Journal of Sport Nutrition & Exercise Metabolism, 14(4), 461-472. http://dx.doi.org/10.1123/ijsnem.14.4.461
Willoughby, D.S. (2004b). Effects of heavy resistance training on myostatin mRNA and protein expression. Medicine & Science in Sports & Exercise, 36(4), 574-582. http://dx.doi.org/10.1249/01.mss.0000121952.71533.ea
Winbanks, C.E., Weeks, K.L., Thomson, R.E., Sepulveda, P.V., Beyer, C., Qian, H., … & Gregorevic, P. (2012). Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. Journal of Cell Biology, 197(7), 997-1008. http://dx.doi.org/10.1083/jcb.201109091