نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری فیزیولوژی ورزشی، گروه تربیت بدنی و علوم ورزشی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
2 استادیار گروه تربیت بدنی و علوم ورزشی، واحد تبریز، دانشگاه آزاد اسلامی،تبریز، ایران.
3 دانشیار گروه علوم ورزشی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران.
4 دانشیار گروه تربیت بدنی و علوم ورزشی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
5 استادیار گروه دامپزشکی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
چکیده
زمینه و هدف: در مورد تاثیر توام تمرین و کورکومین بر آثار سمی آرسنیک در مغز، اطلاعات اندکی موجوداست. این تحقیق با هدف بررسی تأثیر تمرین تناوبی شدید (HIIT) و مصرف کورکومین بر مالون دی آلدهید (MDA)، نیتریت، هموسیستئین و بیان کاسپازهای 3، 8 و 9 مغز موش های صحرائی تحت مواجهه با آرسنیک به اجرا درآمد. روشتحقیق: در این مطالعه تجربی، تعداد 48 سر موش صحرائی نر به شش گروه شامل آرسنیک+تمرین، آرسنیک+کورکومین، توام (آرسنیک+تمرین+ کورکومین)، آرسنیک، کنترل اتانول و کنترل آب مقطر تقسیم شدند. آرسنیک به مدت 6 هفته روزانه از طریق آب آشامیدنی با دوز پنج میلیگرم بر هر کیلوگرم وزن بدن و کورکومین روزانه با دوز 15 میلیگرم بر هر کیلوگرم وزن بدن به صورت گاواژ خورانده شد. تمرین HIIT به مدت شش هفته با تکرار پنج روز در هفته، مشتمل بر 60 دقیقه تمرین تناوبی در هر جلسه (هر تناوب شامل چهار دقیقه دویدن با شدت 90-85 درصد vVO2max و دو دقیقه ریکاوری فعال با شدت 60–50 درصد vVO2max) به اجرا درآمد. از روشهای الایزا، وسترن بلات و واکنش های اسید تیوباربیتوریک وگریس به ترتیب برای اندازه گیری هموسیستئین، بیان کاسپازها، غلظت MDA و نیتریت مغزی استفاده شد. دادهها با روش تحلیل واریانس یک راهه و آزمون تعقیبی توکی در سطح معنیداری 05/0>p تحلیل شدند. یافتهها: مواجهه با آرسنیک، سبب افزایش بیان کاسپازهای 3، 8 و 9 و مقدار MDA و هموسیستئین مغز شد (05/0>p). هر سه مداخله شامل تمرین، کورکومین و یا اثر توام آن ها در مقایسه با گروه کنترل معمولی، افزایش MDA مغزی ناشی از آرسنیک را برطرف کرد (05/0> p)، ولی موجب اصلاح کامل افزایش هموسیستئین نشد (05/0<p). از طرف دیگر، بیان کاسپازهای 8 و 9 مغز، تنها در گروه توام به سطوح مشابه با گروه کنترل معمولی رسید (05/0>p). نتیجهگیری: مواجهه با آرسنیک میتواند به افزایش هموسیستئین، پراکسیداسیون لیپیدی و فعالشدن مسیرهای درونی و بیرونی آپوپتوزیس در مغز موش ها منجر شود. با این که انجام تمرین، مصرف کورکومین و اثر توام آن ها، از پراکسیداسیون لیپیدی مغزی ناشی از آرسنیک جلوگیری کرد، ولی در مورد سایر متغیرها، فقط در گروههای مصرف کورکومین اثرات مفید قابل ملاحظه ای مشاهده شد. همچنین اثر آرسنیک بر افزایش فعالیت مسیرهای داخلی و خارجی آپوپتوزیس مغز، فقط در گروه توام به طور کامل مهار گردید. با این حال، به دلیل پاره ای محدودیت ها و کمبود تحقیقات انسانی، به بررسیهای بیشتر نیاز است.
کلیدواژهها
عنوان مقاله [English]
Effects of high intensity interval training and curcumin consumption on brain lipid peroxidation, homocysteine and caspase activation in rats exposed to arsenic
نویسندگان [English]
- Abdollah Hosseinlou 1
- Roghayeh Pouzesh Jadidi 2
- Karim Azali Alamdari 3
- Jabbar Bashiri 4
- Mir Ali Reza Nourazar 5
1 PhD Student of Exercise Physiology, Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
2 Assistant Professor, Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
3 Associate Professor, Department of Sport Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
4 Associate Professor, Department of Physical Education and Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
5 Assistant Professor, Department of Veterinary, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
چکیده [English]
Background and Aim: Little is known about the concomitant effects of high intensity interval training (HIIT) and curcumin on arsenic toxicity in the brain. The aim of the present study was to evaluate the effects of HIIT and curcumin supplementation on cerebral malondialdehyde (MDA), nitrite, homocysteine and also expression of caspase3, caspae-8 and caspase-9 protein in rats exposed to arsenic. Material and Methods: In this experimental study, 48 male rats were randomly divided into six groups: arsenic+training, arsenic+curcumin, arsenic+training+curcumin (concomitant), arsenic, ethanol-control and normal-control. Arsenic five mg/kg/day and curcumin 15 mg/kg/day were consumed orally (gavaged) for six weeks. HIIT were conducted for six weeks (five sessions/week, each session lasted 60 min) consisted of four min running bouts at 85-90% of vVO2max with two min recovery intervals at 50-60% of vVO2max. Elisa, Western blot and also TBARS as well as Grace reaction methods were used to quantify cerebral homocysteine, caspase expression, MDA and nitrite levels respectively. Data were analyzed by one-way analysis of variance and Tukey post hoc tests at the p<0.05 level. Results: Arsenic exposure significantly elevated brain caspase-3, -8 and -9 expression, as well as MDA and homocysteine levels (p<0.05). All of three interventions including HIIT, curcumin and their concomitance obviated arsenic induced cerebral MDA elevation compared to normal control group (p<0.05), however; it could not fully corrected homocysteine levels (p>0.05). Caspae-8 and -9 protein expression levels were restored to normal control group level, just in concomitant group (p<0.05). Conclusion: Arsenic exposure leads to an increased rat cerebral homocysteine, lipid peroxidation as well as intrinsic and extrinsic apoptotic pathways activation. While HIIT, curcumin and their concomitance prevented arsenic induced cerebral lipid peroxidation, only with curcumin supplementation remarkable benefits were observed for rest of variables. Further, only in the concomitant group, the arsenic induced elevations in the activity of both the intrinsic and extrinsic apoptotic pathways were fully prevented. However, more researches should to be done because of the study limitations and lack of similar evidence in human population.
کلیدواژهها [English]
- Brain tissue
- Oxidative stress
- Hemocysteine
- Exercise Training
- Curcumin
Andrukhov, O., Haririan, H., Bertl, K., Rausch, W. D., Bantleon, H. P., Moritz, A., & Rausch‐Fan, X. (2013). Nitric oxide production, systemic inflammation and lipid metabolism in periodontitis patients: possible gender aspect. Journal of Clinical Periodontology, 40(10), 916-923.
Arnér, E. S., & Holmgren, A. (2000). Physiological functions of thioredoxin and thioredoxin reductase. European Journal of Biochemistry, 267(20), 6102-6109.
Baek, S. S. (2016). Role of exercise on the brain. Journal of Exercise Rehabilitation, 12(5), 380-385.
Biswas, J., Roy, S., Mukherjee, S., Sinha, D., & Roy, M. (2010). Indian spice curcumin may be an effective strategy to combat the genotoxicity of arsenic in Swiss albino mice. Asian Pacific Journal of Cancer Prevention, 11(1), 239-47.
Brinkley, T. E., Fenty-Stewart, N. M., Park, J. Y., Brown, M. D., & Hagberg, J. M. (2009). Plasma nitrate/nitrite levels are unchanged after long-term aerobic exercise training in older adults. Nitric Oxide, 21(3-4), 234-238.
Chan, M. M. Y., Ho, C. T., & Huang, H. I. (1995). Effects of three dietary phytochemicals from tea, rosemary and turmeric on inflammation-induced nitrite production. Cancer Letters, 96(1), 23-29.
D’amelio, M., Cavallucci, V., & Cecconi, F. (2010). Neuronal caspase-3 signaling: not only cell death. Cell Death and Differentiation, 17(7), 1104-1114.
Farkhondeh, T., Samarghandian, S., & Samini, F. (2016). Antidotal effects of curcumin against neurotoxic agents: An updated review. Asian Pacific Journal of Tropical Medicine, 9(10), 947-953.
Flora, S. J., Mittal, M., Pachauri, V., & Dwivedi, N. (2012). A possible mechanism for combined arsenic and fluoride induced cellular and DNA damage in mice. Metallomics, 4(1), 78-90.
Freitas, D. A., Rocha-Vieira, E., Soares, B. A., Nonato, L. F., Fonseca, S. R., Martins, J. B., ... & Meeusen, R. (2018). High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiology and Behavior, 184, 6-11.
Freitas, R. M., Vasconcelos, S. M., Souza, F. C., Viana, G. S., & Fonteles, M. M. (2005). Oxidative stress in the hippocampus after pilocarpine‐induced status epilepticus in Wistar rats. The FEBS Journal, 272(6), 1307-1312.
Gamble, M. V., Liu, X., Ahsan, H., Pilsner, J. R., Ilievski, V., Slavkovich, V., ... & Graziano, J. H. (2005). Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environmental Health Perspectives, 113(12), 1683-1688.
Hafstad, A. D., Lund, J., Hadler-Olsen, E., Höper, A. C., Larsen, T. S., & Aasum, E. (2013). High-and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes, 62(7), 2287-2294.
Høydal, M. A., Wisløff, U., Kemi, O. J., & Ellingsen, Ø. (2007). Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Cardiovascular Prevention and Rehabilitation, 14(6), 753-760.
Hosseinzadeh, S., Roshan, V. D., & Mahjoub, S. (2013). Continuous exercise training and curcumin attenuate changes in brain-derived neurotrophic factor and oxidative stress induced by lead acetate in the hippocampus of male rats. Pharmaceutical Biology, 51(2), 240-245.
Ishrat, T., Hoda, M. N., Khan, M. B., Yousuf, S., Ahmad, M., Khan, M. M., ... & Islam, F. (2009). Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). European Neuropsychopharmacology, 19(9), 636-647.
Kantari, C., & Walczak, H. (2011). Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813(4), 558-563.
Li, W., Suwanwela, N. C., & Patumraj, S. (2016). Curcumin by down-regulating NF-kB and elevating Nrf2, reduces brain edema and neurological dysfunction after cerebral I/R. Microvascular Research, 106, 117-127.
Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., ... & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757.
Liou, C. M., Tsai, S. C., Kuo, C. H., Ting, H., & Lee, S. D. (2014). Cardiac Fas-dependent and mitochondria-dependent apoptosis after chronic cocaine abuse. International Journal of Molecular Sciences, 15(4), 5988-6001.
Mai, Z., & Liu, H. (2009). Boolean network-based analysis of the apoptosis network: irreversible apoptosis and stable surviving. Journal of Theoretical Biology, 259(4), 760-769.
Obeid, R., & Herrmann, W. (2006). Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. Federation of the European Biochemical Societies, 580(13), 2994-3005.
Park, Y. J., Ko, J. W., Jang, Y., & Kwon, Y. H. (2013). Activation of AMP-activated protein kinase alleviates homocysteine- mediated neurotoxicity in SH-SY5Y cells. Neurochemical Research, 38(8), 1561-1571.
Phunchago, N., Wattanathorn, J., & Chaisiwamongkol, K. (2015). Tiliacora triandra, an anti-intoxication plant, improves memory impairment, neurodegeneration, cholinergic function, and oxidative stress in hippocampus of ethanol dependence rats. Oxidative Medicine and Cellular Longevity, 918426.
Prakash, C., & Kumar, V. (2016). Arsenic-induced mitochondrial oxidative damage is mediated by decreased PGC-1α expression and its downstream targets in rat brain. Chemico-Biological Interactions, 256, 228-235.
Prasad, P., & Sinha, D. (2017). Low-level arsenic causes chronic inflammation and suppresses expression of phagocytic receptors. Environmental Science and Pollution Research, 24(12), 11708-11721.
Ringman, J. M., Frautschy, S. A., Teng, E., Begum, A. N., Bardens, J., Beigi, M., ... & Porter, V. (2012). Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer’s Research and Therapy, 4(5), 43.
Sachdev, P. S. (2005). Homocysteine and brain atrophy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(7), 1152-1161.
Selvaraj, V., Armistead, M. Y., Cohenford, M., & Murray, E. (2013). Arsenic trioxide (As2O3) induces apoptosis and necrosis mediated cell death through mitochondrial membrane potential damage and elevated production of reactive oxygen species in PLHC-1 fish cell line. Chemosphere, 90(3), 1201-1209.
Shibata, M., Araki, N., Hamada, J., Sasaki, T., Shimazu, K., & Fukuuchi, Y. (1996). Brain nitrite production during global ischemia and reperfusion: an in vivo microdialysis study. Brain Research, 734(1-2), 86-90.
Shirvani, H., Aslani, J., Mohammadi, Z. F., & Arabzadeh, E. (2019). Short-term effect of low-, moderate-, and high-intensity exercise training on cerebral dopamine neurotrophic factor (CDNF) and oxidative stress biomarkers in brain male Wistar rats. Comparative Clinical Pathology, 28(2), 369-376.
Sun, H., Yang, Y., Shao, H., Sun, W., Gu, M., Wang, H., ... & Gao, Y. (2017). Sodium arsenite-induced learning and memory impairment is associated with endoplasmic reticulum stress-mediated apoptosis in rat hippocampus. Frontiers in Molecular Neuroscience, 10, 286.
Svensson, M., Lexell, J., & Deierborg, T. (2015). Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior: what we can learn from animal models in clinical settings. Neurorehabilitation and Neural Repair, 29(6), 577-589.
Tsai, C. L., Wang, C. H., Pan, C. Y., & Chen, F. C. (2015). The effects of long-term resistance exercise on the relationship between neurocognitive performance and GH, IGF-1, and homocysteine levels in the elderly. Frontiers In Behavioral Neuroscience, 9, 23.
Vincent, K. R., Braith, R. W., Bottiglieri, T., Vincent, H. K., & Lowenthal, D. T. (2003). Homocysteine and lipoprotein levels following resistance training in older adults. Preventive Cardiology, 6(4), 197-203.
Wagner, G., Herbsleb, M., Cruz, F. D. L., Schumann, A., Brünner, F., Schachtzabel, C., ... & Reichenbach, J. R. (2015). Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial. Journal of Cerebral Blood Flow & Metabolism, 35(10), 1570-1578.
Wang, X., Mandal, A. K., Saito, H., Pulliam, J. F., Lee, E. Y., Ke, Z. J., ... & Tucker, T. (2012). Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway. Toxicology and Applied Pharmacology, 262(1), 11-21.
Wolfe, M. S. (Ed.). (2018). The Molecular and Cellular Basis of Neurodegenerative Diseases: Underlying Mechanisms. 1st Edition, Kindle Edition, Academic Press.