نوع مقاله : مقاله پژوهشی
نویسنده
استادیار، گروه علوم ورزشی، واحد شیروان، دانشگاه آزاد اسلامی، شیروان، ایران
چکیده
زمینه و هدف: گیرنده های بتا و گامای فعال شونده با تکثیرکننده پراکسیزوم (PPARβ و PPARγ) محرک بیان ژن های درگیر در انتقال معکوس کلسترول و دفاع آنتی اکسیدانی می باشند، از این رو بیان ژن و افزایش فعالیت این دو ماده می تواند یکی از مکانیزم های مطلوب در پیشگیری از آتروسکلروز باشد. هدف از انجام تحقیق حاضر بررسی تأثیر تمرینات شدید اینتروال (HIIT) و کم شدت تداومی (LICT) پس از رژیم غذایی پرچرب (HFD) بر بیان ژن های PPARβ و PPARγ در موش های نر ویستار بود. روش تحقیق: این تحقیق تجربی شامل دو مرحله چاق کردن با HFD (13 هفته) و تمرین (12 هفته، 5 جلسه در هفته) بود. پس از مرحله چاق کردن، آزمودنی ها به 3 گروه کنترل، تمرین HIIT و تمرین LICT تقسیم شدند. پس از پایان تمرینات، بیان ژن های PPARβ و PPARγ با تکنیک واکنش زنجیره پلیمراز در بافت کبد اندازه گیری شد. با استفاده از آزمون های کروسکاوالیس و یومن ویتنی در سطح معنی داری 05/0≥P نتایج استخراج گردید. یافته ها: بیان ژن های PPARβ و PPARγ بین گروه های کنترل با HIT (008/0 p=) و LICT (008/0 p=) و بین گروه HIT با LICT (008/0 p=) متفاوت بود؛ به گونه ای که بیشترین میزان بیان ژن های PPARβ و PPARγ در گروه HIIT و کمترین میزان آن در گروه کنترل به دست آمد. نتیجه گیری: اجرای منظم HIIT و LICT هردو، با افزایش بیان ژن های PPARβ و PPARγ می توانند در کاهش خطر سکته قلبی مؤثر باشند، با این حال استفاده از HIIT اثربخش تر خواهد بود.
کلیدواژهها
عنوان مقاله [English]
eroxisome proliferator-activated receptors beta and gamma (PPARβ and PPARγ) genes expression following exercise trainings and high fat diet in male Wistar rats
نویسنده [English]
- Mohsen Jafari
Assistant Professor, Department of Sport Sciences, Shirvan Branch, Islamic Azad University, Shirvan, Iran.
چکیده [English]
Background and Aim: Peroxisome proliferator-activated receptors beta and gamma (PPARβ and PPARγ) are stimulator of genes expression involved in reverse cholesterol transport and anti-oxidant defense, thus gene expression and activity of this substance can be one of beneficial mechanisms in prevention of atherosclerosis. The aim of this study was to investigate the effect of high intensity interval training (HIIT) and low intensity continuous training (LICT) after high fat diet (HFD) on PPARβ and PPARγ genes expression in male Wistar rats. Materials and Methods: This experimental study involved two phases of fattening (13 weeks) and training (12 weeks, 5 sessions per week). After fattening phase, subjects assigned into three groups as: control, HIIT and LICT. Analysis of PPARβ and PPARγ genes expression was done using polymerase chain reaction technique after trainings. Results were obtained using Kruskal–Wallis and Mann–Whitney U tests in level of P≤0.05. Results: The PPARβ and PPAR γ genes expression were different between control group with HIIT (P=0.008) and LICT (P=0.008) and between HIIT with LICT (P=0.008); so that higher levels of PPARβ and PPAR γ genes expression observed in HIIT group and lower levels were in control group. Conclusion: Results of this study showed that regular HIIT and LICT through elevation of PPARβ and PPARγ genes expression may be effective in reduction of heart attack risk and HIIT are more effective than LICT.
کلیدواژهها [English]
- Peroxisome proliferator activated receptor
- High intensity interval training
- Continuous training
- High fat diet
Askari, B., Rashidlamir, A., Askari, A., Habibian, M., & Saadatniya, A. (2018). Effect of eight weeks of cardiac rehabilitation training on PPAR-α gene expression in CABG patients. Medical Laboratory Journal, 12 (2), 27-31.
Back, S. S., Kim, J., Choi, D., Lee, E. S., Choi, S. Y., & Han, K. (2013). Cooperative transcriptional activation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 genes by nuclear receptors including Liver-X-Receptor. BMB Reports,
46 (6), 322.
Bentley-Hewitt, K. L., Hedderley, D. I., Monro, J., Martell, S., Smith, H., & Mishra, S. (2016). Comparison of quantitative real-time polymerase chain reaction with NanoString® methodology using adipose and liver tissues from rats fed seaweed. New Biotechnology, 33 (3), 380-386.
Boutcher, S. H. (2010). High-intensity intermittent exercise and fat loss. Journal of Obesity, 2011, 1-10.
Cho, H. W., Shin, S., Park, J. W., Choi, J. Y., Kim, N. Y., Lee, W. K., ... & Cho, B. W. (2015). Molecular characterization and expression analysis of the peroxisome proliferator activated receptor delta (PPARδ) gene before and after exercise in horse. Asian Australasian Journal of Animal Sciences, 28 (5), 697.
Cho, K., Song, Y., & Kwon, D. (2016). Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise. Iranian Journal of Basic Medical Sciences, 19 (1), 20.
Hashemi-Taklimi, M. S., Shabani, M., Shadmehri, S., Sherafati-Moghadam, M., & Fathalipour, M. (2019). The effect of 4 weeks high-intensity interval training (HIIT) on the content of PPARγ and PRDM16 in adipose tissue of diabetic obese
male rats. Feyz, 23 (4), 389-397. [Persian]
Hemati Farsani, Z., Banitalebi, E., Faramarzi, M., & Bigham-Sadegh, A. (2019). The effect of different intensities endurance and resistance training on expression Mir-133a and two transcription factors of osteogenic and adipogenic, Runx2 and PPARY on bone marrow in old male Wistar rats. Sport Physiology, 11 (42), 61-78. [Persian]
Jafari, M., Rashidlamir, A., Dastani, M., Fathi, M., & Alavinya, S. E. (2018). The effect of cardiac rehabilitation on ApoA1 and ApoB in men with coronary heart disease (CHD) after coronary artery bypass graft (CABG). Medical Sciences Journal of Islamic Azad University, Tehran Medical Branch, 28 (2), 117-123. [Persian]
Jafari, M. (2019). Effect of physical activity on prevention and treatment of atherosclerosis: focus on activity of ABCG5 and ABCG8 genes. Journal of Gorgan University of Medical Sciences, 21(3), 13-23. [Persian]
Keating, S. E., Johnson, N. A., Mielke, G. I., & Coombes, J. S. (2017). A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obesity Review, 18 (8), 943-964.
Kim, T., & Yang, Q. (2013). Peroxisome-proliferator-activated receptors regulate redox signaling in the cardiovascular system. World Journal of Cardiology, 5 (6), 164.
Krag, M. B., Nielsen, S., Guo, Z., Pedersen, S. B., Schmitz, O., Christiansen, J. S., & Jørgensen, J. O. (2008). Peroxisome proliferator-activated receptor gamma agonism modifies the effects of growth hormone on lipolysis and insulin sensitivity. Clinical Endocrinology, 69 (3), 452-461.
Liu, W. X., Wang, T., Zhou, F., Wang, Y., Xing, J. W., Zhang, S., ... & Wang, H. L. (2015). Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity. Biochemical and Biophysical Research Communications, 459 (3), 475-480.
Lu, C., & Cheng, S. Y. (2010). Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors. Journal of Molecular Endocrinology, 44 (3), 143.
Mirghani, S. J., Peeri, M., Yekani, O. Y., Zamani, M., Feizolahi, F., Nikbin, S., ... & Khorasani, E. (2019). Role or synergistic interaction of adenosine and vitamin D3 alongside high-intensity interval training and isocaloric moderate intensity
training on metabolic parameters: Protocol for an Experimental Study. JMIR Research Protocols, 8 (1), e10753.
Pascual, G., Fong, A. L., Ogawa, S., Gamliel, A., Li, A. C., Perissi, V., ... & Glass, C. K. (2005). A sumoylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature, 437 (7059), 759-763.
Rahmati-Ahmadabad, S., Broom, D. R., Ghanbari-Niaki, A., & Shirvani, H. (2019). Effects of exercise on reverse cholesterol transport: A systemized narrative review of animal studies. Life Sciences, 224 , 139-148.
Ramos, J. S., Dalleck, L. C., Tjonna, A. E., Beetham, K. S., & Coombes, J. S. (2015). The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis.
Sports Medicine, 45 (5), 679-692.
Repetto, E. M., Carvalheira, J. B., Ignacchitti, I., & Saad, M. J. (2000). JNK activation and association with PPAR-[Gamma] in the muscle and liver of epinephrine treated rats. Diabetes, 49(5), A288-A288.
Shabani, M., Daryanoosh, F., Salesi, M., Kooshki Jahromi, M., & Fallahi, A. A. (2018). Effect of continuous training on the level of PPAR-γ and PRDM16 proteins in adipose tissue in overweight diabetes rats. The Journal of Qazvin University of Medical Sciences, 22 (3), 4-12. [Persian]
Shi, H. B., Shi, H. L., Zhang, X. Y., Chen, D. X., Duan, Z. P., & Ren, F. (2017). Protective effect of glycogen synthase kinase 3β inhibition via peroxisome proliferator-activated receptor alpha activation in mice with acute liver failure. Chinical
Journal of Hepatology, 25 (3), 211-216.
Stanford, K. I., Lynes, M. D., Takahashi, H., Baer, L. A., Arts, P. J., May, F. J., ... & Chen, E. Y. (2018). 12, 13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metabolism, 27 (5), 1111-1120.
Szanto, A., Benko, S., Szatmari, I., Balint, B.L., Furtos, I., Rühl, R., ... & Larsson, H. (2004). Transcriptional regulation of human CYP27 integrates retinoid, peroxisome proliferator-activated receptor, and liver X receptor signaling in macrophages. Molecular Cell Biology, 24 (18), 8154-8166.
Tatebe, N. T., Watanabe, K. S., Zeggar, S., Hiramatsu, S., Yan, M., Katsuyama, T., ... & Wada, J. (2017). LXR, PPARγ, and PPARδ agonists are not sufficient to demonstrate therapeutic potential against mouse model of systemic lupus
erythematosus. Open Journal of Rheumatology and Autoimmune Diseases, 7 (2), 128-136.
Thomas, A. W., Davies, N. A., Moir, H., Watkeys, L., Ruffino, J. S., Isa, S. A., ... & Webb, R. (2012). Exercise-associated generation of PPARγ ligands activates PPARγ signaling events and upregulates genes related to lipid metabolism.
Journal of Applied Physiology, 112 (5), 806-815.
Vallée, A., & Lecarpentier, Y. (2018). Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/β-catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Frontiers Immunology, 9, 745.
Wang, R., Huang, W., & Liang, X. (2012). Involvement of mitogen-activated protein kinases and peroxisome proliferator-activated receptor γ in monosodium urate crystal-induced vascular cell adhesion molecule 1 expression in human rheumatoid arthritis synovial fibroblasts. International Journal of Molecular Medicine, 29 (5), 877-882.
Yaghoobpour Yekani, O., Azarbayjani, M. A., Peeri, M., & Farzanegi, P. (2018). Effect of type of training on markers of hepatocyte apoptosis in rats fed with high fat diet. Yafteh, 19 (5), 106-116. [Persian]
Yamada, Y., Eto, M., Ito, Y., Mochizuki, S., Son, B.K., Ogawa, S., ... & Akishita, M. (2015). Suppressive role of PPARγ-regulated endothelial nitric oxide synthase in adipocyte lipolysis. PLOS One, 10 (8).
Yogosawa, S., Mizutani, S., Ogawa, Y., & Izumi, T. (2013). Activin receptor-like kinase 7 suppresses lipolysis to accumulate fat in obesity through down-regulation of peroxisome proliferator–activated receptor γ and C/EBPα. Diabetes, 62 (1), 115-123.
Yousefipour, Z., Oyekan, A., & Newaz, M. (2010). Interaction of oxidative stress, nitric oxide and peroxisome proliferator activated receptor γ in acute renal failure. Pharmacology & Therapeutics, 125 (3), 436-445.
Zeiaadini Dashtkhaki, L., Rashid Lamir, A., & Naghibi, S. (2017). The effect of aquatic and dryland resistance training on peroxisome proliferator activated receptor-ɑ gene expression in middle-aged women’s peripheral blood mononuclear
cell after coronary artery bypass grafting. Annals of Applied Sport Science, 5 (4), 13-22.