نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار فیزیولوژی ورزشی، گروه علوم ورزشی، دانشگاه بجنورد، بجنورد، ایران.

2 دانشیار بیوشیمی بالینی، گروه بیوشیمی بالینی، دانشگاه علوم پزشکی گناباد، گناباد، ایران.

3 استادیار فیزیولوژی ورزشی، مرکز تحقیقات فیزیولوژی ورزش، دانشگاه علوم پزشکی بقیه الله، تهران، ایران.

4 استادیار فیزیولوژی ورزشی، گروه علوم ورزشی، واحد ایلام، دانشگاه آزاد اسلامی، ایلام، ایران.

چکیده

زمینه و هدف: پراکسید هیدروژن (2O2H) باعث بیان عامل رشد اندوتلیال عروقی (VEGF) می‌شود، این در حالی است که  این دو عامل خود تحت تاثیر تمرینات ورزشی و ویتامین E قرار می‌گیرند. هدف مطالعه حاضر بررسی اثر مصرف ویتامین E سوکسینات و تمرینات تداومی و تناوبی برVEGF و 2O2H مغز موش‌های صحرایی بود. روش تحقیق: 56 سر موش‌ صحرایی آلبینو ویستار (12 هفته سن، 250 تا 300 گرم وزن) به طور تصادفی در 7 گروه کنترل (C)، حامل (V)، مکمل (S)، تمرین تداومی (CT)، تمرین تداومی + مصرف مکمل (CT+S)، تمرین تناوبی (IT) و تمرین تناوبی + مصرف مکمل (IT+S) تقسیم شدند. مغز موش‌ها متعاقب 6 هفته تمرین تداومی (80 درصد max2VO) و تناوبی (95 تا 100 درصد max2VO) توام با مصرف ویتامین E (60 میلی‌گرم/کیلوگرم وزن بدن/روز) برداشته شد. محتوای VEGF  به روش ساندویچ الایزا و 2O2H به روش رنگ‌ سنجی اندازه‌گیری شدند. از آزمون تحلیل واریانس یک طرفه و آزمون تعقیبی بونفرونی برای استخراج نتایج در سطح  0/05>p استفاده شد. یافته‌ها: سطوح 2O2H (به ترتیب با 0/01=p و 0/001=p) وVEGF  (به ترتیب با 0/007=p و 0/001=p) مغز به طور معنی‌داری در هر دو گروه CT  و IT نسبت به گروه C افزایش یافت؛ به گونـه‌ای که افزایش 2O2H وVEGF  در گروه IT نسبت به CT  بیشتر بود (0/02=p برای هر دو عامل 2O2H  وVEGF). با وجود این، مکمل‌دهی ویتامین E تاثیری بر 2O2H (به ترتیب با 0/59=p= 0/99 ،p و 0/51=p) و VEGF (به ترتیب با 0/99=p= 0/99 ،p و 0/67=p) مغز سه گروه S،CT+S  وIT+S  نداشت. به علاوه، همبستگی معنی‌داری بین 2O2H و VEGF مغز دیده شد (0/001=p= 0/73 ،r). نتیجه‌گیری: اجرای تمرینات ورزشی تناوبی با حداکثر شدت نسبت به اجرای تداومی، موجب افزایش بیشتری در عوامل درگیر در رگ زایی می‌شود و مکمل‌دهی ویتامین E سوکسینات تاثیری بر این سازگاری‌های ندارد.

کلیدواژه‌ها

عنوان مقاله [English]

The interactive effect of vitamin E supplementation along with continuous and interval exercise trainings on brain content of vascular endothelial growth factor

نویسندگان [English]

  • Hossein TaheriChadorneshin 1
  • Seyed-Hosein Abtahi-Eivary 2
  • Hossein Shirvani 3
  • Mohammad-Reza Yousefi 4

1 Assistant Professor of Exercise Physiology, Department of Sport Sciences, University of Bojnord, Bojnord, Iran.

2 Associate Professor of Clinical Biochemistry, Department of Clinical Biochemistry, Gonabad University of Medical Sciences, Gonabad, Iran.

3 Assistant Professor of Exercise Physiology, Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.

4 Assistant Professor of Exercise Physiology, Department of Sport Sciences, Ilam Branch, Islamic Azad University, Ilam, Iran.

چکیده [English]

Background and Aim: Hydrogen peroxide (H2O2) increases the vascular endothelial growth factor (VEGF), while these two factores are affected by exercise and vitamin E. The aim of the present study was to investigate the effect of vitamin E succinate supplementation along with continuous and interval exercise trainings on VEGF and H2O2 in rat brain. Material and Methods: Fifty-six Albino Wistar rats (12 years old, 250 to 300 gr) were randomly divided into 7 groups: control (C), vehicle (V), supplements (S), continuous training (CT), continuous training + supplement (CT+S), interval training (IT), interval training + supplementation (IT+S). Rat brain was dissected after 6 weeks of continuous (80% VO2max) and interval exercise training (95 to 100% VO2max) along with vitamin E supplementation (60 mg/kg body weight/day). The content of VEGF and H2O2 were measured using sandwich ELISA and colorimetric assay, respectively. Data were analysed using one-way analysis of variance followed by Bonferroni post-hoc comparison at pResults: Brain H2O2 (p=0.01 and p=0.001, respectively) level and VEGF (p=0.007 and p=0.001, respectively) increased significantly in both of CT and IT groups compare to C group; while the IT resulted in a greater increase in H2O2 and VEGF than those of CT (p=0.02 for both of H2O2 and VEGF). However, vitamin E supplementation had no significant effect on H2O2 (p=0.59, p=0.99 and p=0.51, respectively) and brain VEGF (p=0.99, p=0.99 and p=0.67, respectively) in S, CT + S and IT + S groups. Furthermore, the results showed a positive correlation between BDNF and H2O2 (r=0.73, p=0.001). Conclusion: Performing of exercise training with maximal sprint can result in greater increase in some factors involved in angiogenesis than continuous training; however vitamin E succinate supplementation has not effect on these angiogenic gains.

کلیدواژه‌ها [English]

  • Continuous training
  • Interval training
  • Vitamin E succinate
  • Vascular endothelial growth factor
  • Hydrogen peroxide
Afzalpour, M. E., Chadorneshin, H. T., Foadoddini, M., & Eivari, H. A. (2015). Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiology & Behavior, 147, 78-83.
Al-Jarrah, M., Obaidat, H., Bataineh, Z., Walton, L., & Al-Khateeb, A. (2013). Endurance exercise training protects against the upregulation of nitric oxide in the striatum of MPTP/probenecid mouse model of Parkinson's disease. Neuro Rehabilitation, 32(1), 141-7.
Ardakanizade, M., Ranjbar, K., & Nazem, F. (2017). Effects of 10 weeks endurance exercise on mRNA expressions of angiogenesis factors of skeletal muscle following myocardial infarction in rats. Koomesh, 19(1), 84-92. [Persion]
Birot, O. J. G., Koulmann, N., Peinnequin, A., & Bigard, X. A. (2003). Exercise-induced expression of vascular endothelial growth factor mRNA in rat skeletal muscle is dependent on fibre type. The Journal of Physiology, 552(1), 213-221.
Bloomer, R. J., & Smith, W. A. (2009). Oxidative stress in response to aerobic and anaerobic power testing: influence of exercise training and carnitine supplementation exercise-induced oxidative stress and carnitine supplementation. Research in Sports Medicine, 17(1), 1-16.
Gao, Y., Zhao, Y., Pan, J., Yang, L., Huang, T., Feng, X., ... & Tu, F. (2014). Treadmill exercise promotes angiogenesis in the ischemic penumbra of rat brains through caveolin-1/VEGF signaling pathways. Brain Research, 1585, 83-90.
Haram, P. M., Kemi, O. J., Lee, S. J., Bendheim, M. Ø., Al-Share, Q. Y., Waldum, H. L., ... & Wisløff, U. (2008). Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovascular Research, 81(4), 723-732.
Inokuchi, H., Hirokane, H., Tsuzuki, T., Nakagawa, K., Igarashi, M., & Miyazawa, T. (2003). Anti-angiogenic activity of tocotrienol. Bioscience Biotechnology and Biochemistry, 67(7), 1623-1627.
Jolitha, A. B., Subramanyam, M. V. V., & Asha Devi, S. (2006). Modification by vitamin E and exercise of oxidative stress in regions of aging rat brain: Studies on superoxide dismutase isoenzymes and protein oxidation status. Experimental Qerontology, 41(8), 753-63.
Judge, S., Jang, Y. M., Smith, A., Selman, C., Phillips, T., Speakman, J. R., ... & Leeuwenburgh, C. (2005). Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289(6), R1564-R1572.
Chen, J. X., Zeng, H., Tuo, Q. H., Yu, H., Meyrick, B., & Aschner, J. L. (2007). NADPH oxidase modulates myocardial Akt, ERK1/2 activation, and angiogenesis after hypoxia-reoxygenation. American Journal of Physiology-Heart and Circulatory Physiology, 292(4), H1664-H1674.
Kazemi, M., Marandi, S. M., Movahedian Attar, A., Haghighatian, M., & Rezaee, Z. (2014). The effect of acute exercise on total antioxidant capacity and hydrogen peroxide in male Wistar rats. Journal of Practical Studies of Biosciences In Sport, 2(3), 29-37. [Persion]
Kimura, H., Weisz, A., Kurashima, Y., Hashimoto, K., Ogura, T., D'Acquisto, F., ... & Esumi, H. (2000). Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood, 95(1), 189-197.
Lee, I., Hüttemann, M., Kruger, A., Bollig-Fischer, A., & Malek, M. H. (2015). (-)-Epicatechin combined with 8 weeks of treadmill exercise is associated with increased angiogenic and mitochondrial signaling in mice. Frontiers in Pharmacology, 6, 1-10.
Ma, Y., Qiang, L., & He, M. (2013). Exercise therapy augments the ischemia-induced proangiogenic state and results in sustained improvement after stroke. International Journal of Molecular Sciences, 14(4), 8570-84.
Miyazawa, T., Shibata, A., Nakagawa, K., & Tsuzuki, T. (2008). Anti-angiogenic functions of tocotrienol. Asia Pacific Journal of Clinical Nutrition, 17(S1), 253-256.
Navarro, A., Bandez, M. J., Lopez-Cepero, J. M., Gómez, C., & Boveris, A. D. (2011). High doses of vitamin E improve mitochondrial dysfunction in rathippocampus and frontal cortex upon aging. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300(4), 827-834.
Navarro, A., Gómez, C., Sánchez-Pino, M. J., González, H., Bández, M. J., Boveris, A. D., & Boveris, A. (2005). Vitamin E at high doses improves survival, neurological performance, and brain mitochondrial function in aging male mice. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289(5), R1392-R1399.
Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological Reviews, 88(4), 1243-76.
Ranjbar, K., Nazem, F., & Nazari, A. (2016). Effect of exercise training and l-arginine on oxidative stress and left ventricular function in the post-ischemic failing rat heart. Cardiovascular Toxicology, 16(2), 122-9.
Ristow, M., Zarse, K., Oberbach, A., Klöting, N., Birringer, M., Kiehntopf, M., ... & Blüher, M. (2009). Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences, 106(21), 8665-8670.
Rodrı´guez, J. A., Nespereira, B., Pe´rez-ilzarbe, M., Eguinoa, E., & Pa´ramo, J. A. (2005). Vitamins C and E prevent endothelial VEGF and VEGFR-2 overexpression induced by porcine hypercholesterolemic LDL. Cardiovascular Research, 65(3), 665-673.
Roy, S., Khanna, S., & Sen, C. K. (2008). Redox regulation of the VEGF signaling path and tissue vascularization: Hydrogen peroxide, the common link between physical exercise and cutaneous wound healing. Free Radical Biology and Medicine, 44(2), 180-92.
Sarir, H., Emdadifard, G., Farhangfar, H., & TaheriChadorneshin, H. (2015). Effect of vitamin E succinate on inflammatory cytokines induced by high-intensity interval training. Journal of Research in Medical Sciences, 20(12), 1177-81.
Shibata, A., Nakagawa, K., Sookwong, P., Tsuduki, T., Tomita, S., Shirakawa, H., ... & Miyazawa, T. (2008). Tocotrienol inhibits Secretion of angiogenic factors from human colorectal adenocarcinoma cells by suppressin g hypoxia-inducible factor-1 α. The Journal of Nutrition, 138(11), 2136-2142.
Shin, K. O., Bae, J. Y., Woo, J., Jang, K. S., Kim, K. S., Park, J. S., ... & Kang, S. (2015). The effect of exercise on expression of myokine and angiogenesis mRNA in skeletal muscle of high fat diet induced obese rat. Journal of Exercise Nutrition & Biochemistry, 19(2), 91.
Strobel , N. A. , Peake, J. M. , Matsumoto, A. , Marsh, S. A. , Coombes, J. S. , & Wadley, G. D. (2011). Ant ioxidant supplementat ion reduces skeletal muscle mitochondrial biogenesis. Medicine & Science in Sports & Exercise, 43(6), 1017-1024.
Tang, K., Xia, F. C., Wagner, P. D., & Breen, E. C. (2010). Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respiratory Physiology & Neurobiology, 170(1), 16-22.
Viboolvorakul, S., & Patumraj, S. (2014). Exercise training could improve age-related changes in cerebral blood flow and capillary vascularity through the upregulation of VEGF and Enos. BioMed Research International, 2014, 1-12.
Villar-Cheda, B., Sousa-Ribeiro, D., Rodriguez-Pallares, J., Rodriguez-Perez, A. I., Guerra, M. J., & Labandeira- Garcia, J. L. (2009). Aging and sedentarism decrease vascularization and VEGF levels in the rat substantia nigra. Implications for Parkinson's disease. Journal of Cerebral Blood Flow & Metabolism, 29(2), 230-4.
Woodson, K. , Triantos, S., Hartman, T., Taylor, P. R., Virtamo, J., & Albanes, D. (2002). Long -term alpha-tocopherol supplementation is associated with lower serum vascular endothelial growth factor levels. Anticancer Research, 22(1A), 375-378.
Zhang, P., Yu, H., Zhou, N., Zhang, J., Wu, Y., Zhang, Y., ... & Wu, J. (2013). Early exercise improves cerebral blood flow through increased angiogenesis in experimental stroke rat model. Journal of Neuroengineering and Rehabilitation, 10(1), 43.
Zhao, W., Zhao, T., Chen, Y., Ahokas, R. A., & Sun, Y. (2009). Reactive oxygen species promote angiogenesis in the infracted rat heart. International Journal of Experimental Pathology, 90(6), 621-629.