تأثیر شش هفته تمرین شنا بر میزان پروتئین‌‌های AMPK و Sirt1 و عملکرد حرکتی رت‌‌های مدل مالتیپل اسکلروزیس القاء شده با کوپریزون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 استادیار گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

زمینه و هدف: بیماری مالتیپل اسکلروزیس (MS) یکی از شایع ترین بیماری‌های التهابی مزمن سیستم عصبی مرکزی است که عملکرد حسی و حرکتی را تحت تاثیر قرار می‌‌دهد. از آنجا که فعالیت ورزشی ممکن است دارای فواید ضد التهابی برای این بیماران باشد، هدف از مطالعه‌‌ حاضر بررسی تاثیر شش هفته تمرین شنا بر میزان پروتیین کیناز فعال شده با AMP (AMPK) و سیرتوئین 1 (Sirt1) و عملکرد حرکتی رت ‌‌های مدل MS می‌‌باشد. روش تحقیق: تعداد 36 سر رت‌ نر با سن 12 هفته به‌‌طور تصادفی به چهار گروه: کنترل سالم، سالم تمرین، کنترل MS و تمرین MS تقسیم شدند. جهت القای بیماری MS، رت‌‌‌‌ها در گروه‌‌‌‌های بیمار به مدت شش هفته با غذای دارای کوپریزون با نسبت وزنی 5/0درصد تغذیه شدند. پروتکل تمرین شنا به صورت اختیاری به مدت شش هفته انجام شد، به این صورت که از مدت 10 دقیقه در هفته اول به 30 دقیقه در هفته ششم رسید. از عامل زمان به عنوان اضافه ‌بار تمرینی در هفته‌‌های تمرین استفاده شد. پس از انجام آزمون‌‌‌‌های رفتاری روتارود و جعبه باز، بافت هیپوکمپ استخراج و مقادیر پروتئین‌‌‌‌ها اندازه‌‌گیری شد. داده‌‌ها توسط آزمون تحلیل واریانس یک‌‌راهه و سپس آزمون تعقیبی توکی، مورد بررسی قرار گرفت و سطح معنی‌داری 05/0>p در نظر گرفته شد. یافته‌‌ها: نتایج آزمون‌‌های جعبه باز و روتارود نشان داد که عملکرد فعالیت حرکتی و حفظ تعادل در گروه کنترل MS نسبت به گروه کنترل سالم، دچار اختلال شده؛ اما به‌‌دنبال فعالیت شنا، به‌‌صورت معنی‌‌داری بهبود یافته است (001/0=p). همچنین محتوای پروتئین‌‌های AMPK و Sirt1 در گروه کنترلMS، نسبت به گروه کنترل سالم، به‌‌صورت معنی‌‌داری کاهش پیدا کرد (001/0=p)؛ ضمن آن که مقادیر این پروتئین‌‌ها در گروه تمرین MS نسبت به گروه کنترل MS به‌‌صورت معنی‌‌داری افزایش یافت (به ترتیب با 001/0=p و 003/0=p). نتیجه‌‌گیری: احتمالاً فعالیت ورزشی شنا، با تنظیم میزان پروتئین‌‌‌‌های AMPK و Sirt1، می‌‌‌‌تواند یکی از مسیرهای احتمالی بهبود متابولیسم انرژی نورون‌ها و تنظیم فرآیندهای متابولیکی سیستم عصبی مرکزی باشد و همچنین سبب افزایش عملکرد حرکتی نمونه‌‌های حیوانی مبتلا به این بیماری شود. این یافته‌ها می‌‌تواند راهگشایی برای مطالعات انسانی در آینده باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of six weeks of swimming exercise on the amount of AMPK and Sirt1 proteins and motor performance of multiple sclerosis model rats induced with Cuprizone

نویسندگان [English]

  • Maryam Shabanian 1
  • Mohammad Rami 2
  • Mehrzad Shabani 2
  • Aliakbar Alizadeh 2
1 Msc, Department of Sport Physiology, Faculty of Sport Sciences, Shahid chamran University of Ahvaz, Ahvaz, Iran.
2 Assistant Professor, Department of Sport Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

Extended Abstract 
Background and Aims: Multiple Sclerosis (MS) is one of the most common chronic inflammatory diseases of the central nervous system, impairing both sensory and motor function. The exact etiology of MS remains unclear; however, it is estimated that over 2.8 million people worldwide are affected by the disease. Iran is among the top 10 countries in the world for MS prevalence. Probably, several different factors, including stress, heredity, immune deficiency, autoimmune processes, and environmental factors, especially viral infections, are thought to contribute to its onset and progression. Current anti-inflammatory therapies  that modulate the immune system have limited effects on nerve destruction and clinical disability in the progressive phase of this disease. Similarly, no available treatment has proven effective in preventing cognitive decline through the inhibition of neural degeneration and brain atrophy. Given that exercise may confer anti-inflammatory and neuroprotective effects, the present study aims to evaluate the impact of six weeks of swimming training on AMP-activated protein kinase (AMPK) and Sirtuin 1 (Sirt1) levels, as well as on motor function, in a rat model of MS.
Materials and Methods: In this experimental study, 36 adult rats, with an average age of 12 weeks and weighing 230±14 grams, were obtained from the animal housing center of the faculty of veterinary medicine at Shahid Chamran university of Ahvaz. The rats were randomly assigned to four groups: healthy control, healthy exercise, MS control, and MS exercise in clear polycarbonate cages. During the acclimatization period, the rats’ exercisability was also assessed, and it was determined that all rats were capable of performing voluntary swimming activity. To induce MS, Cuprizone was incorporated into powdered rodent chow at a weight ratio of 0.5% (0.5 g of Cuprizone per 100 g of food). The mixture was thoroughly blended, moistened with water to form pellets, and provided to the animals for six weeks. After this initial period, MS induction was confirmed using the Rotarod test. Cuprizone-containing pellets continued to be administered until week 12, coinciding with the end of the exercise protocol. The voluntary swimming exercise protocol was carried out for six weeks. The duration increased from 10 minutes in the first week to 30 minutes in the sixth week. Time was used as the overload factor during the training weeks. Upon completion of the protocol, motor activity, coordination, and balance were assessed using the open field and Rotarod tests. All behavioral assessments were conducted during the animals’ active light phase, between 9:00 AM and 12:00 PM. Following behavioral testing, hippocampal tissue was extracted for biochemical analysis. Protein levels of AMPK and Sirt1 were quantified using Western blot.
Data were analyzed using one-way ANOVA followed by Tukey’s post-hoc test, with significance set at p<0.05.
Findings: The open-field test results indicated that movement speed and total distance traveled were significantly lower in the MS control group compared with the healthy control group (p=0.001). In contrast, these variables were significantly higher in the MS exercise compared with the MS control group (p=0.001). Similarly, the Rotarod test results showed that the duration of balance on the rod was significantly lower in the MS control compared to the healthy control group (p=0.001). Conversely, the duration on the rod was significantly greater in the MS exercise than in the MS control group (p=0.001). The one-way ANOVA results for hippocampal AMPK and Sirt1 protein levels (Fig 1) revealed significant differences among the experimental groups (p=0.001). Tukey's post hoc analysis for AMPK levels showed that its value in the patient group showed a significant decrease compared to the control group (p=0.001), and after swimming activity, there was a significant increase in the patient's training group (p=0.001), except for the comparison between the healthy control and MS exercise groups (p=0.12). For Sirt1, Tukey’s post-hoc analysis demonstrated significant differences among all groups (p<0.05). Specifically, Sirt1 levels were significantly lower in the MS control compared with the healthy control group (p=0.001) and were significantly higher in the MS exercise compared with the MS control group (p=0.01).
Conclusion: The Cuprizone model, primarily through neuronal cell death, especially in the hippocampus, leads to impairments in movement and balance, as evidenced by deficits in behavioral tests such as the Rotarod and open-field assessments. Previous evidence indicates that exercise may stimulate mitochondrial biogenesis via activation of AMPK and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), thereby reducing oxidative stress. Exercise has also been shown to increase brain-derived neurotrophic factor (BDNF) levels, a neurotrophin essential for myelin sheath regeneration and neuronal protection. Numerous studies have confirmed that BDNF expression in the hippocampus and other brain regions increases in response to exercise.
The present findings demonstrate that swimming exercise significantly increases AMPK and Sirt1 protein levels in the hippocampal tissue of MS-modeled rats and improves motor function in these animals. These results suggest that swimming may exert neuroprotective and functional benefits in MS, potentially through mitochondrial and neurotrophic pathways. However, further studies with broader experimental designs are warranted to explore the underlying mechanisms and assess the translational potential of these findings in human populations.
Ethical Considerations: All stages of the present research were approved by the Ethics Committee of Shahid Chamran University of Ahvaz and registered with the code (IR.SCU.REC.1402.067).
Funding: This study is the result of a master’s thesis from the Department of Exercise Physiology at Shahid Chamran University of Ahvaz, which was carried out using research grant number SCU.SS1402.266.
Conflict of Interest: The authors declare that there are no conflicts of interest regarding this article.

کلیدواژه‌ها [English]

  • Swimming exercise
  • Multiple sclerosis
  • Hippocampus
  • Motor function
1. Portaccio E, Magyari M, Havrdova EK, Ruet A, Brochet B, Scalfari A, Di Filippo M, Tur C, Montalban X, Amato MP. Multiple sclerosis: emerging epidemiological trends and redefining the clinical course. The Lancet Regional Health–Europe. 2024;1:44. https://doi.org/10.1016/j.lanepe.2024.100979
2. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van Der Mei I, Wallin M. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS. Multiple Sclerosis Journal. 2020;26(14):1816-21. https://doi.org/10.1177/1352458520970841
3. Sadeghi B, Estebsari F, Ebadi A, Rasouli M, Sadeghi E. The social support needs of family caregivers of patients with multiple sclerosis: a qualitative study. Archives of Rehabilitation. 2022;23(1):68-87. [In Persian].  https://doi.org/10.32598/RJ.23.1.3330.1
4. Jalali, A., & Pourhosein, R. adaptability to multiple sclerosis (MS) from psychological and social perspectives: a systematic review of literature. Rooyesh-e-Ravanshenasi. 2021;9(10):143-152. [In persian]. https://doi.org/20.1001.1.2383353.1399.9.10.1.2
5. Rommer PS, Eichstädt K, Ellenberger D, Flachenecker P, Friede T, Haas J, Kleinschnitz C, Pöhlau D, Rienhoff O, Stahmann A, Zettl UK. Symptomatology and symptomatic treatment in multiple sclerosis: Results from a nationwide MS registry. Multiple Sclerosis Journal. 2019;25(12):1641-52. https://doi.org/10.1177/1352458518799580 
6. Artemiadis AK, Anagnostouli MC. Apoptosis of oligodendrocytes and post-translational modifications of myelin basic protein in multiple sclerosis: possible role for the early stages of multiple sclerosis. European Neurology. 2010;63(2):65-72. https://doi.org/10.1159/000272940 
7. Halper J, Holland N. Multiple sclerosis: A self-care guide to wellness. Demos Medical Publishing; 2005 Jun 1.
8. Baltan S, Jawaid SS, Chomyk AM, Kidd GJ, Chen J, Battapady HD, Chan R, Dutta R, Trapp BD. Neuronal hibernation following hippocampal demyelination. Acta Neuropathologica Communications. 2021;9(1):34. https://doi.org/10.1186/s40478-021-01130-9 
9. Zhan J, Mann T, Joost S, Behrangi N, Frank M, Kipp M. The cuprizone model: dos and do nots. Cells. 2020;9(4):843. https://doi.org/10.3390/cells9040843 
10. Guo LY, Lozinski B, Yong VW. Exercise in multiple sclerosis and its models: Focus on the central nervous system outcomes. Journal of Neuroscience Research. 2020;98(3):509-23. https://doi.org/10.1002/jnr.24524 
11. Ye JN, Chen XS, Su L, Liu YL, Cai QY, Zhan XL, Xu Y, Zhao SF, Yao ZX. Progesterone alleviates neural behavioral deficits and demyelination with reduced degeneration of oligodendroglial cells in cuprizone-induced mice. PLoS One. 2013;8(1):e54590. https://doi.org/10.1371/journal.pone.0054590 
12. Rieckmann P, Centonze D, Elovaara I, Giovannoni G, Havrdová E, Kesselring J, Kobelt G, Langdon D, Morrow SA, Oreja-Guevara C, Schippling S. Unmet needs, burden of treatment, and patient engagement in multiple sclerosis: a combined perspective from the MS in the 21st century steering group. Multiple Sclerosis and Related Disorders. 2018;19:153-60. https://doi.org/10.1016/j.msard.2017.11.013 
13. Sandroff BM, Jones CD, Baird JF, Motl RW. Systematic review on exercise training as a neuroplasticity-inducing behavior in multiple sclerosis. Neurorehabilitation and Neural Repair. 2020;34(7):575-88. https://doi.org/10.1177/1545968320921836 
14. Aslam M, Ladilov Y. Emerging role of cAMP/AMPK signaling. Cells. 2022;11(2):308. https://doi.org/10.3390/cells11020308 
15. Gaetani L, Salvadori N, Chipi E, Gentili L, Borrelli A, Parnetti L, Di Filippo M. Cognitive impairment in multiple sclerosis: lessons from cerebrospinal fluid biomarkers. Neural Regeneration Research. 2021;16(1):36-42. https://doi.org/10.4103/1673-5374.286949 
16. Ammar RA, Mohamed AF, Kamal MM, Safar MM, Abdelkader NF. Neuroprotective effect of liraglutide in an experimental mouse model of multiple sclerosis: role of AMPK/SIRT1 signaling and NLRP3 inflammasome. Inflammopharmacology. 2022;30(3):919-34.  https://doi.org/10.1007/s10787-022-00956-6 
17. Narine M, Azmi MA, Umali M, Volz A, Colognato H. The AMPK activator metformin improves recovery from demyelination by shifting oligodendrocyte bioenergetics and accelerating OPC differentiation. Frontiers in Cellular Neuroscience. 2023;17:1254303. https://doi.org/10.3389/fncel.2023.1254303 
18. Patel S, Khan H, Majumdar A. Crosstalk between Sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metabolic Brain Disease. 2022;37(7):2181-95. https://doi.org/10.1007/s11011-022-00956-z 
19. Paintlia AS, Paintlia MK, Mohan S, Singh AK, Singh I. AMP-activated protein kinase signaling protects oligodendrocytes that restore central nervous system functions in an experimental autoimmune encephalomyelitis model. The American Journal of Pathology. 2013;183(2):526-41.  https://doi.org/10.1016/j.ajpath.2013.04.030 
20. Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, Tie J, Hu D. Regulation of SIRT1 and its roles in inflammation. Frontiers in Immunology. 2022;13:831168. https://doi.org/10.3389/fimmu.2022.831168 
21. Bamps S, Wirtz J, Savory FR, Lake D, Hope IA. The Caenorhabditis elegans sirtuin gene, sir-2.1, is widely expressed and induced upon caloric restriction. Mechanisms of Ageing and Development. 2009;130(11-12):762-70. https://doi.org/10.1016/j.mad.2009.10.001 
22. Fagerli E, Escobar I, Ferrier FJ, Jackson CW, Perez-Lao EJ, Perez-Pinzon MA. Sirtuins and cognition: implications for learning and memory in neurological disorders. Frontiers in Physiology. 2022;13:908689.  https://doi.org/10.3389/fphys.2022.908689 
23. Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY. The sirtuin family in health and disease. Signal Transduction and Targeted Therapy. 2022;7(1):402.  https://doi.org/10.1038/s41392-022-01257-8 
24. Nageeb RS, Fawzy A, Ateya MA, Talaat A. Sirtuin-1 level and gene polymorphisms in multiple sclerosis. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery. 2024;60(1):43.  https://doi.org/10.1186/s41983-024-00819-7 
25. Atkinson KC, Osunde M, Tiwari-Woodruff SK. The complexities of investigating mitochondria dynamics in multiple sclerosis and mouse models of MS. Frontiers in Neuroscience. 2023;17:1144896.  https://doi.org/10.3389/fnins.2023.1144896 
26. Warutkar V, Gulrandhe P, Morghade S, Kovela RK, Morghade Jr SV. Physiotherapy for multiple sclerosis patients from early to transition phase: A scoping review. Cureus. 2022;14(10). https://doi.org/10.7759/cureus.30779 
27. Harrison AM, Safari R, Mercer T, Picariello F, van der Linden ML, White C, Moss-Morris R, Norton S. Which exercise and behavioural interventions show most promise for treating fatigue in multiple sclerosis? A network meta-analysis. Multiple Sclerosis Journal. 2021;27(11):1657-78.  https://doi.org/10.1177/1352458521996002 
28. Torres-Costoso A, Martinez-Vizcaino V, Reina-Gutiérrez S, Álvarez-Bueno C, Guzmán-Pavón MJ, Pozuelo-Carrascosa DP, et al. Effect of exercise on fatigue in multiple sclerosis: a network meta-analysis comparing different types of exercise. Archives of Physical Medicine and Rehabilitation. 2022;103(5):970-87. https://doi.org/10.1016/j.apmr.2021.08.008 
29. Deforges S, Branchu J, Biondi O, Grondard C, Pariset C, Lécolle S, Lopes P, Vidal PP, Chanoine C, Charbonnier F. Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis. The Journal of Physiology. 2009;587(14):3561-72.  https://doi.org/10.1113/jphysiol.2009.169748 
30. Kim JY, Yi ES, Lee H, Kim JS, Jee YS, Kim SE, Kim CJ, Ko IG. Swimming exercise ameliorates symptoms of MOG-induced experimental autoimmune encephalomyelitis by inhibiting inflammation and demyelination in rats. International Neurourology Journal. 2020;24(Suppl 1):S39. https://doi.org/10.5213/inj.2040156.078 
31. Barclay W, Shinohara ML. Inflammasome activation in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Brain Pathology. 2017;27(2):213-9. https://doi.org/10.1111/bpa.12477 
32. Nazari M, Kordi MR, Minasian V, Quchan AH. Ameliorating effect of 6-week swimming exercise on mice with experimental autoimmune encephalomyelitis (EAE) by reducing fetuin-A and increasing AMPK & NAD⁺ levels in liver tissue. Iranian Journal of Basic Medical Sciences. 2022;25(8):1016. https://doi.org/10.22038/IJBMS.2022.65117.14335
33. Zimmermann J, Emrich M, Krauthausen M, Saxe S, Nitsch L, Heneka MT, Campbell IL, Müller M. IL-17A promotes granulocyte infiltration, myelin loss, microglia activation, and behavioral deficits during cuprizone-induced demyelination. Molecular Neurobiology. 2018;55(2):946-57. https://doi.org/10.1007/s12035-016-0368-3 
34. Lubrich C, Giesler P, Kipp M. Motor behavioral deficits in the cuprizone model: validity of the rotarod test paradigm. International Journal of Molecular Sciences. 2022;23(19):11342.  https://doi.org/10.3390/ijms231911342 
35. Ghotbeddin Z, Basir Z, Jamshidian J, Delfi F. Modulation of behavioral responses and CA1 neuronal death by nitric oxide in the neonatal rat’s hypoxia model. Brain and Behavior. 2020;10(11):e01841.  https://doi.org/10.1002/brb3.1841 
36. Ghotbeddin Z, Khazaeel K, Tabandeh MR, Aliheydari M, Yaghoubi H. Effects of omega-3 fatty acid supplementation during chronic maternal hypoxia on behavioral disorders in male rat offspring: The role of Trk family and oxidative stress. Metabolic Brain Disease. 2022;37(6):1959-67. https://doi.org/10.1007/s11011-022-01012-6 
37. McQualter JL, Bernard CC. Multiple sclerosis: a battle between destruction and repair. Journal of Neurochemistry. 2007;100(2):295-306.  https://doi.org/10.1111/j.1471-4159.2006.04232.x 
38. Omotoso GO, Gbadamosi IT, Afolabi TT, Abdulwahab AB, Akinlolu AA. Ameliorative effects of Moringa on cuprizone-induced memory decline in rat model of multiple sclerosis. Anatomy & Cell Biology. 2018;51(2):119-27.  https://doi.org/10.5115/acb.2018.51.2.119 
39. Mandolesi G, Bullitta S, Fresegna D, De Vito F, Rizzo FR, Musella A, Guadalupi L, Vanni V, Bassi MS, Buttari F, Viscomi MT. Voluntary running wheel attenuates motor deterioration and brain damage in cuprizone-induced demyelination. Neurobiology of Disease. 2019;129:102-17.  https://doi.org/10.1016/j.nbd.2019.05.010 
40. Tomas-Roig J, Torrente M, Cabré M, Vilella E, Colomina MT. Long lasting behavioural effects on cuprizone fed mice after neurotoxicant withdrawal. Behavioural Brain Research. 2019;363:38-44.  https://doi.org/10.1016/j.bbr.2019.01.036 
41. Han SR, Kang YH, Jeon H, Lee S, Park SJ, Song DY, Min SS, Yoo SM, Lee MS, Lee SH. Differential expression of miRNAs and behavioral change in the cuprizone-induced demyelination mouse model. International Journal of Molecular Sciences. 2020;21(2):646. https://doi.org/10.3390/ijms21020646 
42. Naghibzadeh M, Ranjbar R, Tabandeh MR, Habibi A. Effects of two training programs on transcriptional levels of neurotrophins and glial cells population in hippocampus of experimental multiple sclerosis. International Journal of Sports Medicine. 2018;39(08):604-12.  https://doi.org/10.1055/a-0608-4635 
43. Fietsam AC, Darling WG, Sosnoff JJ, Workman CD, Kamholz J, Rudroff T. Cerebellar contributions to motor impairments in people with multiple sclerosis. The Cerebellum. 2022;21(6):1052-60. https://doi.org/10.1007/s12311-021-01336-6 
44. Parmar K, Fonov VS, Naegelin Y, Amann M, Wuerfel J, Collins DL, Gaetano L, Magon S, Sprenger T, Kappos L, Granziera C. Regional cerebellar volume loss predicts future disability in multiple sclerosis patients. The Cerebellum. 2022;21(4):632-46. https://doi.org/10.1007/s12311-021-01312-0 
45. D’Ambrosio A, Pagani E, Riccitelli GC, Colombo B, Rodegher M, Falini A, Comi G, Filippi M, Rocca MA. Cerebellar contribution to motor and cognitive performance in multiple sclerosis: an MRI sub-regional volumetric analysis. Multiple Sclerosis Journal. 2017;23(9):1194-203.  https://doi.org/10.1177/1352458516674567 
46. Wilkins A. Cerebellar dysfunction in multiple sclerosis. Frontiers in Neurology. 2017;8:312.  https://doi.org/10.3389/fneur.2017.00312 
47. Liu Y, Fan H, Li X, Liu J, Qu X, Wu X, Liu M, Liu Z, Yao R. Trpv4 regulates Nlrp3 inflammasome via SIRT1/PGC-1α pathway in a cuprizone-induced mouse model of demyelination. Experimental Neurology. 2021;337:113593.  https://doi.org/10.1016/j.expneurol.2020.113593 
48. Zhang YJ, Li J, Huang W, Mo GY, Wang LH, Zhuo Y, Zhou ZY. Effect of electroacupuncture combined with treadmill exercise on body weight and expression of PGC-1α, Irisin and AMPK in skeletal muscle of diet-induced obesity rats. Zhen ci yan jiu= Acupuncture Research. 2019;44(7):476-80. https://doi.org/10.13702/j.1000-0607.180460
49. Morissette MP, Susser SE, Stammers AN, Moffatt TL, Wigle JT, Wigle TJ, et al. Exercise-induced increases in the expression and activity of cardiac sarcoplasmic reticulum calcium ATPase 2 is attenuated in AMPKα2 kinase-dead mice. Canadian Journal of Physiology and Pharmacology. 2019;97(8):786-95.  https://doi.org/10.1139/cjpp-2018-0737 
50. Wadley GD, Lee-Young RS, Canny BJ, Wasuntarawat C, Chen ZP, Hargreaves M, Kemp BE, McConell GK. Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. American Journal of Physiology-Endocrinology and Metabolism. 2006;290(4):E694-702.  https://doi.org/10.1152/ajpendo.00464.2005 
51. Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 activity control in neurodegenerative diseases. Frontiers in Pharmacology. 2021;11:585821.  https://doi.org/10.3389/fphar.2020.585821 
52. Ruderman NB, Julia Xu X, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y. AMPK and SIRT1: a long-standing partnership?. American Journal of Physiology-Endocrinology and Metabolism. 2010;298(4):E751-60.  https://doi.org/10.1152/ajpendo.00745.2009 
53. Wang J, Zhao C, Kong P, Bian G, Sun Z, Sun Y, Guo L, Li B. Methylene blue alleviates experimental autoimmune encephalomyelitis by modulating AMPK/SIRT1 signaling pathway and Th17/Treg immune response. Journal of Neuroimmunology. 2016;299:45-52. https://doi.org/10.1016/j.jneuroim.2016.08.014 
54. Govindarajan V, de Rivero Vaccari JP, Keane RW. Role of inflammasomes in multiple sclerosis and their potential as therapeutic targets. Journal of Neuroinflammation. 2020;17(1):260.  https://doi.org/10.1186/s12974-020-01944-9 
55. Farahmand F, Nourshahi M, Soleimani M, Rajabi H, Power KE. The effect of 6 weeks of high intensity interval training on myelin biomarkers and demyelination in experimental autoimmune encephalomyelitis model. Journal of Neuroimmunology. 2020;346:577306. https://doi.org/10.1016/j.jneuroim.2020.577306 
56. Marosi K, Bori Z, Hart N, Sárga L, Koltai E, Radák Z, Nyakas C. Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience. 2012;226:21-8.  https://doi.org/10.1016/j.neuroscience.2012.09.001 
57. Salamon A, Torok R, Sumegi E, Boros F, Pesei ZG, Molnar MF, et al. The effect of physical stimuli on the expression level of key elements in mitochondrial biogenesis. Neuroscience Letters. 2019;698:13-8. https://doi.org/10.1016/j.neulet.2019.01.003 
58. Shen J, Li Y, Qu C, Xu L, Sun H, Zhang J. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus. Journal of Affective Disorders. 2019;248:81-90.  https://doi.org/10.1016/j.jad.2019.01.031 
59. Bernardes D, Oliveira-Lima OC, da Silva TV, Faraco CC, Leite HR, Juliano MA, dos Santos DM, Bethea JR, Brambilla R, Orian JM, Arantes RM. Differential brain and spinal cord cytokine and BDNF levels in experimental autoimmune encephalomyelitis are modulated by prior and regular exercise. Journal of neuroimmunology. 2013;264(1-2):24-34.  https://doi.org/10.1016/j.jneuroim.2013.08.014