تأثیر تحریک الکتریکی-عضلانی و فعالیت ورزشی فزآینده بر عوامل منتخب قلبی-تنفسی مردان دارای اضافه‌وزن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه علامه طباطبائی، تهران، ایران.

2 کارشناس ارشد فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه عامه طباطبائی، تهران، ایران.

3 استاد گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه عامه طباطبائی، تهران، ایران.

4 دانشجوی دکتری گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه حکیم سبزواری، سبزوار. ایران.

چکیده

زمینه و هدف: افراد دارای اضافه‌وزن و چاق معمولاً با اختلالات غیرطبیعی در عملکرد قلبی-تنفسی مواجه هستند که این امر به کاهش ظرفیت عملکردی باقی‌مانده منجر می‌شود. با این‌وجود، کاهش وزن در این افراد معمولاً به بهبود وضعیت عملکرد قلبی-تنفسی منجر می‌گردد. تحریک الکتریکی عضلانی (EMS) به‌عنوان یک روش کمکی در مدیریت مشکلات مرتبط با چاقی موردتوجه قرار گرفته است. این مطالعه به بررسی تأثیر حاد فعالیت ورزشی فزآینده و EMS بر شاخص‌های قلبی-تنفسی در مردان دارای اضافه‌وزن پرداخته است. روش تحقیق: در این مطالعه نیمه‌تجربی و کاربردی، ۱۰ مرد با میانگین سن 08/6 ± 1/29 سال، شاخص توده بدنی 98/1 ± 49/28 کیلوگرم بر مترمربع به‌صورت داوطلبانه شرکت و در سه جلسه به آزمایشگاه مراجعه نمودند. در جلسه اول، آزمون فزآینده را تا رسیدن به نسبت تبادل تنفسی معادل یک و سپس تا واماندگی برای تعیین حداکثر اکسیژن مصرفی (VO2max) اجرا کردند. در جلسه دوم، همین آزمون با اضافه‌شدن EMS با فرکانس 75-35 هرتز انجام شد. در جلسه سوم، تنها EMS اجرا گردید. شاخص‌های قلبی-تنفسی قبل، ‌‌‌‌‌‌‌حین و طی 20 دقیقه ریکاوری بلافاصله بعد از هر جلسه، مورد بررسی قرار گرفتند. تحلیل آماری داده‌ها با استفاده از روش تحلیل واریانس دوراهه با اندازه‌گیری‌های مکرر و همچنین آزمون تعقیبی توکی در سطح معنی‌داریp<0/05  انجام شد. یافته‌ها: نتایج نشان داد که انرژی مصرفی (0001/0 p<)، تهویه ریوی (0001/0 p<)، نسبت تهویه دقیقه‌ای به دی‌اکسیدکربن  (0002/0 p=)، اکسیژن مصرفی (0001/0 p<)، و ضربان قلب (04/0=p)؛ پس از مداخله فعالیت ورزشی فزآینده و فعالیت ورزشی فزآینده+ EMSدر مقایسه با EMS؛ به طور معنی دار افزایش پیدا کرده است؛ در حالی که  این شاخص ها بین فعالیت ورزشی فزآینده و فعالیت ورزشی فزآینده+EMS، تفاوت معنی‌داری نداشتند (48/p=0). از طرف دیگر، میزان فشارخون سیستولیک دوره ریکاوری بین هر سه مداخلة، تفاوت معنی داری نداشت (83/p=0). نتیجه‌‌گیری: فعالیت ورزشی فزآینده در مقایسه با EMS، تأثیر بیشتری بر شاخص‌های قلبی-تنفسی از جمله مصرف اکسیژن، ضربان قلب، تهویه دقیقه‌ای و انرژی مصرفی  دارد و سبب بازگشت سریع‌تر این پارامترها به مقادیر پایه در مرحله بازیابی پس از فعالیت می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of electromyo stimulation and incremental exercise activity on selected cardio-respiratory factors in overweight men

نویسندگان [English]

  • Minoo Bassami 1
  • Anahita Etesam 2
  • Bakhtyar Tartibian 3
  • Amirhossein Mohkami 4
1 Associate Professor at Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran.
2 MS.c in Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran.
3 Professor at Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Allameh Tabataba’i University, Tehran, Iran.
4 Ph.D. Student in Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran.
چکیده [English]

Extended Abstract
Background and Aim: The global prevalence of obesity has nearly doubled in recent decades, becoming as a major public health concern. Obesity is a modifiable risk factor for cardiovascular diseases and mortality and is closely associated to pulmonary, skeletal, and neurological disorders. However, physiological limitations often hinder exercise adherence in obese individuals. Whole-body neuromuscular electrical stimulation (WB-EMS) has emerged as a potential alternative, enhancing muscle activation and metabolic responses with lower mechanical load. While WB-EMS improves body composition and strength in obese populations, its acute effects on cardiopulmonary parameters particularly compared to incremental exercise remain underexplored. The present study aimed to compare the acute impacts of WB-EMS, incremental exercise, and their combination on selected cardiopulmonary markers in overweight men. 
Materials and Methods: This applied semi-experimental study employed a crossover design to investigate the acute effects of electromyo stimulation (EMS) and incremental exercise (IE) on cardiorespiratory parameters in overweight men. Ten sedentary male participants (BMI: 25–30 kg/m²; age: 20–40 years) were recruited via public announcements in Tehran. After receiving a detailed explanation of the study’s aims and procedures, all participants provided written informed consent and completed a dietary recall questionnaire. Exclusion criteria included smoking, diagnosed cardiovascular or respiratory diseases, diabetes, hypertension, regular exercise participation, and the use of medications or supplements during the study period. Each participant completed three randomly ordered protocols with a one-week washout period among sessions: (1) an incremental exercise test on a cycle ergometer, beginning at 50 W with 25 W increments every 3 minutes until reaching a respiratory exchange ratio (RER) of 1.0, then increasing by 25 W every 2 minutes until volitional exhaustion to determine VO₂max; (2) the same IE combined with EMS; and (3) EMS alone in a seated position for a matched duration. EMS was delivered via a 7-channel TITAN device (Salatandishan Co., Iran) using bipolar pulses (6 s on, 4 s off), targeting 9 major muscle groups through specially designed EMS garments. Cardiorespiratory responses, including minute ventilation (VE), Energy expenditure (EE), ventilatory equivalent for carbon dioxide ratio (VE/VCO2), oxygen consumption (VO2), heart rate (HR), and systolic blood pressure (SBP), were recorded breath-by-breath using a ZAN 600 gas analyzer (nspire Health, Germany) at baseline, during exercise, and throughout a 20-minute recovery period. Blood pressure was measured at rest, immediately after exercise, and at 10 and 20 minutes post-exercise. One-way and two-way repeated measures ANOVA with Tukey’s post-hoc test were used for data analysis. Statistical significance was set at p<0.05.
Results: The mean ± standard deviation values of the measured variables were assessed across the three interventions: IE, IE+EMS, and EMS alone. Two-way repeated measures ANOVA indicated significant effects for all main outcome variables (p<0.01). Tukey’s post-hoc analysis showed that both IE and IE+EMS interventions significantly increased VE, VE/VCO₂, VO₂, and HR during the exercise protocol and recovery phase (p<0.0001). However, no significant differences were observed between IE and IE+EMS for these variables. For VE, no significant difference was found between IE and IE+EMS during exercise (p=0.48) or recovery (p=0.20). Nevertheless, both exercise conditions produced higher VE compared to EMS alone during exercise (p<0.0001) and showed a significant reduction during recovery (p<0.0001). The VE/VCO₂ ratio did not differ significantly between IE and IE+EMS during exercise (p=0.20) or recovery (p=0.76), but both exercise trials had higher values than EMS alone during exercise (p=0.04) and recovery (p=0.0002). VO₂ also showed similar patterns, with no significant differences between IE and IE+EMS during exercise (p=0.87) or recovery (p=0.65). Both incremental exercise trials, however, produced significantly higher VO₂ compared to EMS alone during exercise (p<0.0001) and significantly lowered VO₂ during recovery (p<0.0001). HR did not differ significantly between IE and IE+EMS immediately post-protocol (p=0.38), at 10 minutes of recovery (p=0.60), or at 20 minutes of recovery (p=0.76). However, both IE+EMS and IE interventions caused a significant increase in HR compared to EMS alone immediately post-protocol (p=0.0002), at 10 minutes (p=0.0008), and at 20 minutes of recovery (p<0.0001). SBP did not differ significantly between IE and IE+EMS immediately post-protocol (p=0.95), at 10 minutes (p=0.86), or at 20 minutes of recovery (p=0.83). Nevertheless, both IE and IE+EMS resulted in significantly higher SBP immediately post-protocol compared to EMS alone (p<0.0001), with no differences observed at 10 minutes (p=0.83) or 20 minutes (p=0.85) of recovery. EE differed significantly among the three interventions (one-way ANOVA, p=0.03). Bonferroni post-hoc analysis showed that EE in the EMS condition alone was significantly lower than IE (p=0.001) and IE+EMS (p=0.04), while no significant difference was observed between IE and IE+EMS (p=0.93).
Conclusion: This study yielded several key findings. First, combining EMS with IE did not significantly enhance acute cardiorespiratory responses beyond those elicited by IE. This indicates that EMS does not augment the immediate physiological benefits of aerobic exercise in overweight men. Second, both IE and IE+EMS produced higher energy expenditure, oxygen consumption, VE, and HR responses compared to EMS. These consistent differences across all measured parameters underscore the superior efficacy of active exercise in stimulating acute cardiorespiratory function. Third, recovery patterns were similar across both exercise conditions, whereas, EMS showed a distinct recovery pattern, likely due to its lower physiological load. Overall , these results highlight the vital role of traditional exercise methods in cardiorespiratory activation within overweight populations. Although EMS may serve as an adjunctive tool, especially when conventional exercise is not feasible, it does not appear to provide comparable short-term physiological benefits when used independently. 
Ethical Considerations: This study was approved by the Research Ethics Committees   from Allameh Tabataba’i University (IR.ATU.REC.1399.08).  All participants were informed about the study procedures and provided written informed consent.
Compliance with Ethical Guidelines: The research followed the ethical standards of the Declaration of Helsinki and institutional guidelines. Participation was voluntary, and confidentiality was maintained.
Funding: The authors declare that no financial support was received for this study.
Conflicts of Interest: The authors declare no conflicts of interest regarding the publication of this study.

کلیدواژه‌ها [English]

  • Electrical stimulation
  • Energy consumption
  • Pulmonary ventilation
  • VE/VCO2
  • Oxygen consumption
  • Overweight
1. Clemens RA, Jones JM, Kern M, Lee SY, Mayhew EJ, Slavin JL, Zivanovic S. Functionality of sugars in foods and health. Comprehensive Reviews in Food Science and Food Safety. 2016;15(3):433-70. https://doi.org/10.1111/1541-4337.12194 
2. Clemens RA Jones JM, Kern M, Lee SY, Mayhew EJ, Slavin JL, et al. Functionality of sugars in foods and health. Comprehensive Reviews in Food Science and Food Safety. 2016;15(3):433-70. https://doi.org/10.1111/1541-4337.12194.
3. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9(1):88. https://doi.org/10.1186/1471-2458-9-88.
4. Smith K, Smith M. Obesity statistics. Primary care: Clinics in Office Practice. 2016;43(1):121-135. https://doi.org/10.1016/j.pop.2015.10.001.
5. Prentice AM, Black AE, Coward WA, Cole TJ. Energy expenditure in overweight and obese adults in affluent societies: an analysis of 319 doubly-labelled water measurements. European Journal of Clinical Nutrition1996;50(2):93-7.
6. Fonseca DC, Sala P, de Azevedo Muner Ferreira B, Reis J, Torrinhas RS, Bendavid I, et al. Body weight control and energy expenditure. Clinical Nutrition Experimental. 2018;20:55-9. https://doi.org/10.1016/j.yclnex.2018.04.001k.
7. Piaggi P, Thearle MS, Bogardus C, Krakoff J. Lower energy expenditure predicts long-term increases in weight and fat mass. The Journal of Clinical Endocrinology and Metabolism. 2013;98(4):E703-7.  https://doi.org/10.1210/jc.2012-3529.
8. Piaggi P, Vinales KL, Basolo A, Santini F, Krakoff J. Energy expenditure in the etiology of human obesity: spendthrift and thrifty metabolic phenotypes and energy-sensing mechanisms. Journal of Endocrinological Investigation. 2018;41(1):83-9. https://doi.org/10.1007/s40618-017-0732-9.
9. Dixon AE, Peters U. The effect of obesity on lung function. Expert Review of Respiratory Medicine. 2018;12(9):755-67.  https://doi.org/10.1080/17476348.2018.1506331.
10. Kress JP, Pohlman AS, Alverdy J, Hall JB. The impact of morbid obesity on oxygen cost of breathing (Vo 2RESP) at rest. American Journal of Respiratory and Critical Care Medicine. 1999;160(3):883-6. https://doi.org/10.1164/ajrccm.160.3.9902058.
11. Balmain BN, Halverson QM, Tomlinson AR, Edwards T, Ganio MS, Babb TG. Obesity blunts the ventilatory response to exercise in men and women. Annals of the American Thoracic Society. 2021;18(7):1167-74. https://doi.org/10.1513/AnnalsATS.202006-746OC.
12. Shariq OA, McKenzie TJ. Obesity-related hypertension: a review of pathophysiology, management, and the role of metabolic surgery. Gland Surgery. 2020;9(1):80-93. doi: https://doi.org/10.21037/gs.2019.12.03.
13. Torres SJ, Turner AI, Jayasinghe SU, Reynolds J, Nowson CA. The effect of overweight/obesity on cardiovascular responses to acute psychological stress in men aged 50-70 years. Obes Facts. 2014;7(6):339-50. https://doi.org/10.1159/000369854.
14. Abassi W, Ouerghi N, Nikolaidis PT, Hill L, Racil G, Knechtle B, et al. Interval training with different intensities in overweight/obese adolescent females. International Journal of Sports Medicine. 2022;43(05):434-43. http://dio.org/10.1055/a-1648-4653.
15. Ouerghi N, Fradj MKB, Duclos M, Bouassida A, Feki M, Weiss K, et al. Effects of high-intensity interval training on selected adipokines and cardiometabolic risk markers in normal-weight and overweight/obese young males—A pre-post test trial. Biology. 2022;11(6):853. https://doi.org/10.3390/biology11060853.
16. Rodrigues-Santana L, Hugo L, Pérez-Gómez J, Hernández-Mocholí MA, Carlos-Vivas J, Saldaña-Cortés P, et al. The effects of whole-body muscle stimulation on body composition and strength parameters: A PRISMA systematic review and meta-analysis. Medicine. 2023;102(8):e32668. http://dio.org/10.1097/MD.0000000000032668.
17. Reljic D, Herrmann HJ, Neurath MF, Zopf Y. Iron beats electricity: Resistance training but not whole-body electromyostimulation improves cardiometabolic health in obese metabolic syndrome patients during caloric restriction—A randomized-controlled study. Nutrients. 2021;13(5):1640. https://doi.org/10.3390/nu13051640.
18. Willert S, Weissenfels A, Kohl M, Von Stengel S, Fröhlich M, Kleinöder H, et al. Effects of whole-body electromyostimulation on the energy-restriction-induced reduction of muscle mass during intended weight loss. Frontiers in Physiology. 2019;10:1012. https://doi.org/10.3389/fphys.2019.01012.
19. Woessner MN, Tacey A, Levinger-Limor A, Parker AG, Levinger P, Levinger I. The evolution of technology and physical inactivity: the good, the bad, and the way forward. Frontiers in Public Health. 2021;9:655491. https://doi.org/10.3389/fpubh.2021.655491.
20. Kemmler W, Kohl M, Freiberger E, Sieber C, von Stengel S. Effect of whole-body electromyostimulation and/or protein supplementation on obesity and cardiometabolic risk in older men with sarcopenic obesity: the randomized controlled FranSO trial. BMC Geriatrics. 2018;18(1):70. https://doi.org/10.1186/s12877-018-0759-6.
21. Teschler M, Heimer M, Schmitz B, Kemmler W, Mooren FC. Four weeks of electromyostimulation improves muscle function and strength in sarcopenic patients: a three‐arm parallel randomized trial. Journal of Cachexia, Sarcopenia and Muscle. 2021;12(4):843-54. https://doi.org/10.1002/jcsm.12717.
22. Amaro-Gahete FJ, De-La-O A, Sanchez-Delgado G, Robles-Gonzalez L, Jurado-Fasoli L, Ruiz JR, et al. Whole-body electromyostimulation improves performance-related parameters in runners. Frontiers in Physiology. 2018;9:1576. dio: https://doi.org/10.3389/fphys.2018.01576.
23. Kemmler W, Teschler M, Weißenfels A, Bebenek M, Fröhlich M, Kohl M, et al. Effects of whole‐body electromyostimulation versus high‐intensity resistance exercise on body composition and strength: a randomized controlled study. Evidence‐Based Complementary and Alternative Medicine. 2016;2016(1):9236809. https://doi.org/10.1155/2016/9236809.
24. Wittmann K, Sieber C, von Stengel S, Kohl M, Freiberger E, Jakob F, et al. Impact of whole body electromyostimulation on cardiometabolic risk factors in older women with sarcopenic obesity: the randomized controlled FORMOsA-sarcopenic obesity study. Clinical Interventions in Aging. 2016:1697-706. https://doi.org/10.2147/CIA.S116430.
25. Enge D. Effects of Obesity and Type 2 Diabetes on Cardiac Structure and Arterial Stiffness: University of Colorado at Denver; 2022. http://dio.org/10.1097/HJH.0000000000003534.
26. Rodrigues JAL, Ferrari GD, Trapé ÁA, de Moraes VN, Gonçalves TCP, Tavares SS, et al. β2 adrenergic interaction and cardiac autonomic function: effects of aerobic training in overweight/obese individuals. European Journal of Applied Physiology. 2020;120(3):613-24. https://doi.org/10.1007/s00421-020-04301-z.
27. Moholdt T, Garnaes KK, Morkved S, Salvesen KA, Ingul CB. Effect of exercise training on cardiorespiratory fitness, cardiac function, and endothelial function in pregnant people with overweight/obesity: secondary results from a randomised, controlled trial. European Journal of Preventive Cardiology. 2024;31(Supplement_1). https://doi.org/10.1093/eurjpc/zwae175.382.
28. Ghaith A, Chacaroun S, Borowik A, Chatel L, Doutreleau S, Wuyam B, et al. Hypoxic high-intensity interval training in individuals with overweight and obesity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2022;323(5):R700-r9. https://doi.org/10.1152/ajpregu.00049.2022.
29. Bo B, Guo A, Kaila SJ, Hao Z, Zhang H, Wei J, et al. Elucidating the primary mechanisms of high-intensity interval training for improved cardiac fitness in obesity. Frontiers in Physiology. 2023;14:1170324. https://doi.org/10.3389/fphys.2023.1170324.
30. Salhi A, Ouerghi N, Zouhal H, Baaziz M, Salhi A, Ben Salah FZ, et al. The effect of whole-body electromyostimulation program on physical performance and selected cardiometabolic markers in obese young females. Medicina (Kaunas). 2024;60(2). dio:‌ https://doi.org/10.3390/medicina60020230.
31. Sara JD, Rajai N, Breuer L, Bjerke J, Olson TP, Nagai T, et al. Physical training augmented with whole body electronic muscle stimulation is superior to conventional training alone in healthy subjects, a pilot randomized controlled trial. Circulation. 2022;146(Suppl_1):A11957-A. https://www.jacc.org/doi/full/10.1016/S0735-1097%2823%2902597-4.
32. Maunder E, Plews DJ, Kilding AE. Contextualising maximal fat oxidation during exercise: determinants and normative values. Frontiers in Physiology. 2018;9:599. https://doi.org/10.3389/fphys.2018.00599.
33. Achten J, Jeukendrup A. Maximal fat oxidation during exercise in trained men. International Journal of Sports Medicine. 2003;24(08):603-8. http://dio.org/10.1055/s-2003-43265.
34. Cheneviere X, Malatesta D, Peters EM, Borrani F. A mathematical model to describe fat oxidation kinetics during graded exercise. Medicine & Science in Sports & Exercise. 2009;41(8):1615-25.   http://dio.org/10.1249/MSS.0b013e31819e2f91.
35. Kemmler W, Von Stengel S, Schwarz J, Mayhew JL. Effect of whole-body electromyostimulation on energy expenditure during exercise. The Journal of Strength & Conditioning Research. 2012;26(1):240-5. http://dio.org/10.1519/JSC.0b013e31821a3a11.
36. Filipovic A, Kleinöder H, Dörmann U, Mester J. Electromyostimulation—a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters. The Journal of Strength & Conditioning Research. 2011;25(11):3218-38. http://dio.org/10.1519/JSC.0b013e318212e3ce.
37. Price M, Bottoms L, Hill M, Eston R. Maximal fat oxidation during incremental upper and lower body exercise in healthy young males. International Journal of Environmental Research and Public Health. 2022;19(22):15311. https://doi.org/10.3390/ijerph192215311.
38. Zinner C, Matzka M, Krumscheid S, Holmberg H-C, Sperlich B. Cardiorespiratory, metabolic and perceived responses to electrical stimulation of upper‐body muscles while performing arm cycling. Journal of Human Kinetics. 2021;77:117. https://doi.org/10.2478/hukin-2021-0016.
39. Crandall R, Seigler N, Rodriguez-Miguelez P, McKie K, Forseen C, Harris R. A single maximal exercise test improves lung function in patients with cystic fibrosis: 465. Pediatric Pulmonology. 2015;50:367.  https://doi.org/10.1016/j.jcf.2017.05.011.
40. Derakhshan Nejad M, Nikbakht M, Ghanbarzadeh M, Ranjbar R. Effect of Concurrent Training Order With Electromyostimulation on Physical Performance in Young Elderly Women. Archives of Rehabilitation. 2021;21(4):508-25. http://dx.doi.org/10.32598/RJ.21.4.3147.1.
41. Chlif M, Chaouachi A, Ahmaidi S. Effect of aerobic exercise training on ventilatory efficiency and respiratory drive in obese subjects. Respir Care. 2017;62(7):936-46. https://doi.org/10.4187/respcare.04923.
42. Chlif M, Chaouachi A, Ahmaidi S. Effect of aerobic exercise training on ventilatory efficiency and respiratory drive in obese subjects. Respiratory Care. 2017;62(7):936-46. https://doi.org/10.4187/respcare.04923..
43. Miyamoto T, Kamada H, Tamaki A, Moritani T. Low-intensity electrical muscle stimulation induces significant increases in muscle strength and cardiorespiratory fitness. European Journal of Sport Science. 2016;16(8):1104-10. https://doi.org/10.1080/17461391.2016.1151944.
44. Watanabe K, Taniguchi Y, Moritani T. Metabolic and cardiovascular responses during voluntary pedaling exercise with electrical muscle stimulation. European Journal of Applied Physiology. 2014;114(9):1801-7. https://doi.org/10.1007/s00421-014-2906-x. 
45. Biss S, Teschler M, Heimer M, Thum T, Bär C, Mooren FC, et al. A single session of EMS training induces long-lasting changes in circulating muscle but not cardiovascular miRNA levels: a randomized crossover study. Journal of Applied Physiology. 2023;134(4):799-809. https://doi.org/10.1152/japplphysiol.00557.2022.