تأثیر تمرین هوازی بر بیان ژن‌های p53 و miR-34a در بافت قلب موش‌های صحرایی دیابتی نوع دو

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران

2 گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران

3 گروه فیزیولوژی ورزشی، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران

4 4. دانشجوی کارشناسی ارشد فیزیولوژی ورزشی، دانشکدۀ تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران

5 دانشیار بافت شناسی مقایسه‌ای، گروه علوم پایه، دانشکده دامپزشکی، دانشگاه تبریز، تبریز، ایران.

چکیده

زمینه و هدف: تحقیقات قبلی اثرات مخرب بیان ژن‌های p53 و miR-34a در دیابت نوع دو را نشان داده‌اند. با این حال، اثرات تمرینات هوازی بر تغییرات p53 و miR-34a بافت قلبی موش‌های مبتلا به دیابت نوع دو نامشخص است. بنابراین، این مطالعه با هدف بررسی تأثیر تمرین هوازی بر بیان ژن‌های p53 و miR-34a در بافت قلب موش‌های صحرایی دیابتی نوع دو انجام شد. روش تحقیق: تحقیق حاضر از نوع مطالعات تجربی است. برای این منظور، 20 سر موش صحرایی نر نژاد ویستار (میانگین وزن 28±239 گرم، سن شش الی هشت هفته‌ای) به‌طورتصادفی به چهار گروه شامل گروه‌های کنترل دیابتی، کنترل سالم، تمرین دیابتی، و تمرین سالم تقسیم شدند. غذای حیوانات به صورت پلت با دسترسی آزاد و آب در یک بطری 500 میلی‌لیتری ارائه شد. برای القاء دیابت نوع دو، رژیم غذایی پرچرب به مدت دو هفته و سپس تزریق استروپتوزوتوسین در حالت ناشتا صورت گرفت. پروتکل تمرین شامل تمرین هوازی دویدن روی نوارگردان به‌مدت هشت هفته با افزایش تدریجی سرعت و زمان (۵ تا ۱۰ به ۱۸ تا ۲۴ متر در دقیقه و 10 تا 15 دقیقه به ۶۰ دقیقه) پنج روز در هفته و با رعایت اصل اضافه بار بود. بیان نسبی ژن‌های p53 و miR-34a در نمونه‌های بافت قلب با Real-Time PCR اندازه‌گیری شد. داده‌ها با استفاده از روش تحلیل واریانس یک‌راهه و آزمون تعقیبی توکی در سطح 0/05≥p مورد تجزیه و تحلیل قرار گرفت. یافته‌ها: بر اساس نتایج، بیان نسبی ژن‌های p53 و miR-34a بین گروه‌ها تفاوت معنی‌داری داشت (0/001=p). بیان نسبی p53 در گروه کنترل دیابت بیشتر از گروه‌های تمرین سالم و کنترل سالم بود (0/001=p)، اما در گروه تمرین دیابت نسبت به گروه کنترل دیابت کاهش غیرمعنی‌داری مشاهده شد (0/05=p). بیان نسبی miR-34a در گروه کنترل دیابت بیشتر از گروه‌های تمرین سالم (0/001=p) و کنترل سالم (0/001=p) بود. همچنین، گروه تمرین دیابت نسبت به گروه کنترل دیابت کاهش معنی‌داری نشان داد (0/02=p). نتیجه‌گیری: به نظر میرسد بخشی از تأثیرات مورفولوژیکی و سلولی مخرب دیابت نوع دو بر بافت قلبی، از طریق اثرات هشت هفته تمرین هوازی بر بیان نسبی miR-34a تحت تأثیر قرار گیرد؛ اما احتمالاً برای مشاهده تأثیرات کاهشی بر بیان نسبی p53، به شرایط تمرینی متفاوتی نیاز است.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of aerobic training on the expression of p53 and miR-34a genes in the heart tissue of type II diabetic rats

نویسندگان [English]

  • Badrkhan Rashwan Ismael 1
  • Elaheh Piralaiy 2
  • Saeid D. Nikoukheslat 3
  • Alireza Rashidpour 4
  • Gholamreza Hamidian 5
1 Ph.D student, Exercise physiology, Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, University of Tabriz, Tabriz, Iran
2 Assistant Professor, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
3 Associate Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
4 Master's Student in Exercise physiology, Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, University of Tabriz, Tabriz, Iran
5 Associate Professor in Comparative Histology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
چکیده [English]

Extended Abstract
Background and Aim: In recent years, type II diabetes (T2DM) has emerged as a chronic metabolic disease with increasing prevalence and is recognized one of the primary causes of cardiovascular complications. In this condition, elevated levels of microRNAs such as miR-34a and the p53 protein are associated with pancreatic β-cell apoptosis, cardiac dysfunction, and the progression of diabetic cardiomyopathy. miR-34a, as a key downstream target of p53, plays a critical role in regulating gene expression and modulating both  inflammatory and oxidative stress responses.
Evidence indicates that moderate-to-high-intensity aerobic training can reduce the expression of miR-34a and p53, thereby exerting cardioprotective effects in diabetic patients. Several animal studies have also demonstrated reductions in these markers following exercise training. As a result , regular physical activity may serve as an effective non-pharmacological strategy to improve cardiac outcomes and reduce metabolic complications in T2DM. Given the involvement of microRNAs in the pathophysiology of various diseases, including diabetes, and the therapeutic value of aerobic training in T2DM as well as the existing inconsistencies in studies on the effects of physical activity on microRNAs, the present study aims to investigate the effect of aerobic training on the expression of p53 and miR-34a genes in the heart tissue of T2DM rats.
Materials and Methods: This experimental laboratory study employed a one-factor post-test design, was conducted with the approval of the ethics committee of the university of Tabriz (ID: IR.TABRIZU.REC.1402.022). Twenty male Wistar rats aged six to eight weeks, with an average weight of 239±28 grams, were obtained from the animal laboratory of Tabriz university. After a two-week acclimation period under laboratory conditions, the rats were randomly divided into four groups: healthy control, healthy training (HT), diabetic control (DC), and diabetic training (DT).
T2DM was induced using a combination of a high-fat diet (HFD) and intraperitoneal injection of Streptozotocin at a dose of 35 mg/kg. Rats with blood glucose levels exceeding 300 mg/dl were considered diabetic.
The aerobic training protocol consisted of treadmill running for eight weeks, five days per week, with gradual increments in speed from 5–10 m/min to 18–24 m/min and duration from 10 to 60 minutes.
Auditory stimuli were used to motivate the rats to run. Heart tissue sampling was conducted 48 hours after the last training session under anesthesia induced by a Ketamine-Xylazine combination. Heart tissue was harvested and stored at −80°C until analysis. RNA extraction was carried out on all tissue samples using two 50-reaction RNA extraction kits, following the manufacturer’s instructions. Real-Time PCR was performed using the Corbett Rotor-Gene 6000 system. The Real-Time PCR protocol employed the SYBR Green method with a melting curve analysis stage conducted between 65°C and 95°C. Following completion of the process and obtaining threshold cycle (Ct) values, gene expression quantification of the target variables was calculated using the (2^–ΔΔCT) mathematical method. This comprehensive method allowed for the assessment of the effects of aerobic training on the expression of genes related to cellular damage and diabetes.
For statistical analysis, one-way ANOVA followed by Tukey’s post hoc tests were applied. All statistical operations were conducted using SPSS software version 27, with significance level at p<0.05.
Findings: The results of the one-way ANOVA revealed that the expression levels of the genes p53 (p=0.001, F(3,16)=15.08) and miR-34a (p=0.001, F(3,16)=43.94) in the heart tissue of rats showed significant differences among the studied groups. The results from Tukey’s post hoc test indicated that the expression levels of p53 were significantly higher in the diabetic control group compared to the healthy training and healthy control groups (p=0.001). Meanwhile, the diabetic training group did not show a significant difference compared to the diabetic control (p=0.05) and healthy training groups (p=0.13), but a significant difference compared to the healthy control group (p=0.02). No significant difference was observed between the healthy training and healthy control groups (p=0.73). The expression level of miR-34a was significantly higher in the diabetic control group compared to the healthy training and healthy control groups (p=0.001). Additionally , a significant difference was observed between the diabetic training group and the diabetic control group (p=0.02), as well as the healthy training and healthy control groups (p=0.001). However, no significant difference was found between the healthy training and healthy control groups (p=0.52) (Figure 1).
Conclusion: The findings of the present study suggest that eight weeks of aerobic training can attenuate some of the morphological and cellular damage induced by T2DM in heart tissue. The reduction in miR-34a gene expression following aerobic training may indicate a potential therapeutic target for individuals with T2DM. However, achieving statistically significant reductions in p53 gene expression may require a larger sample size, higher exercise intensity, longer session duration, or a prolonged training period. Given the limited number of studies examining the effects of aerobic training on the expression of p53 and miR-34a genes, it remains plausible that the intensity, duration, and type of exercise play a role in modulating p53 gene responses and their interaction with miR-34a, warranting further investigation. It is also noteworthy that the eight-week aerobic training did not induce significant changes in the expression levels of p53 and miR-34a genes in healthy animals, indicating the need for additional studies employing alternative training protocols.
Ethical Considerations: This study is an extract from a senior master’s thesis that was conducted after ethical approval with the ID (IR.TABRIZU.REC.1402.022) from the Ethics Committee of the University of Tabriz.
Compliance with ethical guidelines: All ethical principles were fully observed by the researchers throughout the study.
Funding: The present study is an extract from the senior master’s thesis in exercise physiology, faculty of physical education and sport sciences, university of Tabriz, which was completed at the student’s own expense.
Conflicts of interest: The authors of the article declare that there are no conflicts of interest in the present research.
Acknowledgments: The author would like to thank the laboratory of the faculty of veterinary medicine, university of Tabriz, for their sincere cooperation in providing and maintaining the animals.

کلیدواژه‌ها [English]

  • Keywords: Aerobic training
  • miR-34a
  • p53
  • Type II diabetes
1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan B, et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. 2021. https://doi.org/10.1016/j.diabres.2021.109119
2. Huang H, Luo Y, Wang Q, Zhang Y, Li Z, He R, et al. Vaccinium as a potential therapy for diabetes and microvascular complications. Nutrients. 2023;15(9):2031. https://doi.org/10.3390/nu15092031
3. Update A. Heart disease and stroke statistics–2017 update. Circulation. 2017;135:e146–e603.
4. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Failure Reviews. 2013;18:149–66. https://doi.org/10.1007/s10741-012-9313-3
5. Ward M-L, Crossman DJ. Mechanisms underlying the impaired contractility of diabetic cardiomyopathy. World Journal of Cardiology. 2014;6(7):577. https://doi.org/10.4330/wjc.v6.i7.577
6. Palazzuoli A, Iacoviello M. Diabetes leading to heart failure and heart failure leading to diabetes: epidemiological and clinical evidence. Heart Failure Reviews. 2023;28(3):585–96. https://doi.org/10.1007/s10741-022-10238-6
7. Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovascular Research. 2012;93(4):583–93. https://doi.org/10.1093/cvr/cvr300
8. Ceman S, Saugstad J. MicroRNAs: Meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease. Pharmacology & Therapeutics. 2011;130(1):26–37. https://doi.org/10.1016/j.pharmthera.2011.01.004
9. Aval SF, Lotfi H, Sheervalilou R, Zarghami N. Tuning of major signaling networks (TGF-β, Wnt, Notch, and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application. Biomedicine & Pharmacotherapy. 2017;91:849–60. https://doi.org/10.1016/j.biopha.2017.05.020
10. Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R. Diabetes mellitus, a microRNA-related disease? Translational Research. 2011;157(4):253–64.  https://doi.org/10.1016/j.trsl.2011.01.009
11. Matsuyama H, Suzuki HI. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. International Journal of Molecular Sciences. 2019;21(1):132. https://doi.org/10.3390/ijms21010132
12. Hammond SM. An overview of microRNAs. Advanced Drug Delivery Reviews. 2015;87:3–14. https://doi.org/10.1016/j.addr.2015.05.001
13. Navarro F, Lieberman J. miR-34 and p53: new insights into a complex functional relationship. PLOS One. 2015;10(7):e0132767. https://doi.org/10.1371/journal.pone.0132767
14. Li L. Regulatory mechanisms and clinical perspectives of miR-34a in cancer. Journal of Cancer Research and Therapeutics. 2014;10(4):805–10.  https://doi.org/10.4103/0973-1482.146084
15. Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell. 2007;26(5):745–52. https://doi.org/10.1016/j.molcel.2007.05.010
16. Seyhan AA, Nunez Lopez YO, Xie H, Yi F, Mathews C, Pasarica M, et al. Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Scientific Reports. 2016;6(1):31479. https://doi.org/10.1038/srep31479
17. Lin X, Guan H, Huang Z, Liu J, Li H, Wei G, et al. Downregulation of Bcl‐2 expression by miR‐34a mediates palmitate‐induced Min6 cells. Journal of Diabetes Research. 2014;2014(1):258695. https://doi.org/10.1155/2014/258695
18. Ni T, Lin N, Lu W, Sun Z, Lin H, Chi J, et al. Dihydromyricetin prevents diabetic cardiomyopathy via miR-34a suppression by activating autophagy. Cardiovascular Drugs and Therapy. 2020;34:291–301. https://doi.org/10.1007/s10557-020-06968-0
19. Jiao D, Zhang H, Jiang Z, Huang W, Liu Z, Wang Z, et al. MicroRNA-34a targets sirtuin 1 and leads to diabetes-induced testicular apoptotic cell death. Journal of Molecular Medicine. 2018;96:939–49. https://doi.org/10.1007/s00109-018-1667-0
20. Backe MB, Novotny GW, Christensen DP, Grunnet LG, Mandrup-Poulsen T. Altering β-cell number through stable alteration of miR-21 and miR-34a expression. Islets. 2014;6(1):e27754. https://doi.org/10.4161/isl.27754
21. Ghorbanalizadeh M, Gholami F. Effect of 12-week aerobic training on cardiac p53 and AIF gene expression in male rats. Medical Journal of Tabriz University of Medical Sciences. 2020;42(3):310–8. [In Persian].  https://doi.org/10.34172/mj.2020.050
22. Kung C-P, Murphy ME. The role of the p53 tumor suppressor in metabolism and diabetes. The Journal of Endocrinology. 2016;231(2):R61.   https://doi.org/10.1530/JOE-16-0324
23. Jokar M, Moghadam MS. Effect of 4 weeks of high-intensity interval training on P53 and caspase-3 protein content in the heart muscle tissue of rats with type 1 diabetes. Journal of Shahid Sadoughi University of Medical Sciences. 2021. [In Persian].  https://doi.org/10.18502/ssu.v29i11.8502
24. Sharafi H, Rahimi R. The effect of resistance exercise on p53, caspase-9, and caspase-3 in trained and untrained men. The Journal of Strength & Conditioning Research. 2012;26(4):1142–8. https://doi.org/10.1519/JSC.0b013e31822e58e5
25. Flores-López LA, Díaz-Flores M, García-Macedo R, Ávalos-Rodríguez A, Vergara-Onofre M, Cruz M, et al. High glucose induces mitochondrial p53 phosphorylation by p38 MAPK in pancreatic RINm5F cells. Molecular Biology Reports. 2013;40:4947–58. https://doi.org/10.1007/s11033-013-2595-2
26. Tavana O, Gu W. Modulation of the p53/MDM2 interplay by HAUSP inhibitors. Journal of Molecular Cell Biology. 2017;9(1):45–52.   https://doi.org/10.1093/jmcb/mjw049
27. Lee J, Kang Y, Khare V, Jin Z, Kang M, Yoon Y, et al. The p53-inducible gene 3 (PIG3) contributes to early cellular response to DNA damage. Oncogene. 2010;29(10):1431–50. https://doi.org/10.1038/onc.2009.438
28. Schwingshackl L, Missbach B, Dias S, König J, Hoffmann G. Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetologia. 2014;57(9):1789–97. https://doi.org/10.1007/s00125-014-3303-z
29. Cassidy S, Thoma C, Hallsworth K, Parikh J, Hollingsworth KG, Taylor R, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial. Diabetologia. 2016;59:56 66. https://doi.org/10.1007/s00125-015-3741-2
30. Wilson GA, Wilkins GT, Cotter JD, Lamberts RR, Lal S, Baldi JC. HIIT Improves Left Ventricular Exercise Response in Adults with Type 2 Diabetes. Medicine and Science in Sports and Exercise. 2019;51(6):1099–105. https://doi.org/10.1249/MSS.0000000000001897
31. Improta Caria AC, Nonaka CKV, Pereira CS, Soares MBP, Macambira SG, Souza BSdF. Exercise training-induced changes in microRNAs: beneficial regulatory effects in hypertension, type 2 diabetes, and obesity. International Journal of Molecular Sciences. 2018;19(11):3608. https://doi.org/10.3390/ijms19113608
32. da Silva FC, da Rosa Iop R, Andrade A, Costa VP, Gutierres Filho PJB, da Silva R. Effects of physical exercise on the expression of microRNAs: a systematic review. The Journal of Strength & Conditioning Research. 2020;34(1):270–80. https://doi.org/10.1519/JSC.0000000000003103
33. Al-Jarrah M, Ahmad MB, Maayah M, Al-Khatib A. Effect of exercise training on the expression of p53 and iNOS in the cardiac muscle of type I diabetic rats. Journal of Endocrinology and Metabolism. 2012;2(4-5):176–80. https://doi.org/10.4021/jem123e
34. Rahbarghazi A, Alamdari KA, Rahbarghazi R, Salehi-Pourmehr H. Co-administration of exercise training and melatonin on the function of diabetic heart tissue: a systematic review and meta-analysis of rodent models. Diabetology & Metabolic Syndrome. 2023;15(1):67. https://doi.org/10.1186/s13098-023-01045-6
35. Qi Z, He J, Zhang Y, Shao Y, Ding S. Exercise training attenuates oxidative stress and decreases p53 protein content in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. Free Radical Biology and Medicine. 2011;50(7):794–800. https://doi.org/10.1016/j.freeradbiomed.2010.12.022
36. Gaderpour S, Ghiasi R, Hamidian G, Heydari H, Keyhanmanesh R. Voluntary exercise improves spermatogenesis and testicular apoptosis in type 2 diabetic rats through alteration in oxidative stress and mir-34a/SIRT1/p53 pathway. Iranian Journal of Basic Medical Sciences. 2021;24(1):58. [In Persian]. https://doi.org/10.22038/ijbms.2020.49498
37. Shu-fang H, Jia-ying L, Min Y, Jie F, Bin L, Zheng W, et al. Effect of endurance training on the expression profile of circRNAlncRNA-miRNA-mRNA in myocardial tissues of mice after exhaustive exercise. Journal of Hainan Medical University. 2023;29(3). Accession Number: 162709665
38. Akbari J, Shirvani H, Shamsoddini A, Bazgir B, Samadi M. Investigation of expression of myocardial miR-126, miR-29a, and miR-222 as a potential marker in STZ-induced diabetic rats following interval and continuous exercise training. Journal of Diabetes & Metabolic Disorders. 2022:1 7. https://doi.org/10.1007/s40200-021-00957-2
39. Ashrafi, Bolboli, Lotfa Ali, Khazani, Asadi, Asadollah. The effect of 12 weeks of resistance training with elastic bands on the expression level of mir-34a and cardiovascular risk factors in obese elderly women. Journal of Applied Exercise Physiology. 2020;16(31):15–29. [In Persian].  https://doi.org/10.22080/JAEP.2019.16103.1867
40. Abdollahi-Diba M, Bashiri J, Pourmanaf H, Fekri-Kourabbaslou V. The effect of endurance exercise and rosehip extract supplementation on the expression of P53 and cytochrome C genes in male rat heart. Journal of Cardiovascular and Thoracic Research. 2022;14(4):246. https://doi.org/10.34172/jcvtr.2022.31599
41. Kim H, Bae Y-U, Lee H, Kim H, Jeon JS, Noh H, et al. Effect of diabetes on exosomal miRNA profile in patients with obesity. BMJ Open Diabetes Research & Care. 2020;8(1). https://doi.org/10.1136/bmjdrc-2020-001403
42. Sasidharan SR, Joseph JA, Anandakumar S, Venkatesan V, Ariyattu Madhavan CN, Agarwal A. An experimental approach for selecting appropriate rodent diets for research studies on metabolic disorders. BioMed Research International. 2013;2013(1):752870. https://doi.org/10.1155/2013/752870
43. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacological Research. 2005;52(4):313–20. https://doi.org/10.1016/j.phrs.2005.05.004
44. Rashwan Ismael B, Piralaiy E, D. Nikoukheslat S, Hamidiyan G. The effect of eight weeks of aerobic training on miR-30c gene expression and glycemic Indices in heart tissue of type 2 diabetic Rats. Journal of Sport Biosciences. 2024;16(3):21–38.  [In Persian]. https://doi.org/10.22059/jsb.2024.370737.1624
45. Waring CD, Vicinanza C, Papalamprou A, Smith AJ, Purushothaman S, Goldspink DF, Nadal-Ginard B, Torella D, Ellison GM. The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation. European Heart Journal. 2014 Oct 14;35(39):2722-31. https://doi.org/10.1093/eurheartj/ehs338
46. Tabatabaeipanah S, Akbarzadeh R, Khodayi Z, Ghaderian S. Increased oxidative stress and expression of p53, bax, and bcl2 genes in patients with acute myocardial infarction. Daneshvar Pezeshki. 2020;23(5):1–10. [In Persian].
47. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. Journal of Biological Chemistry. 2009;284(20):13291–5. https://doi.org/10.1074/jbc.R900010200
48. Wan Y, Cui R, Gu J, Zhang X, Xiang X, Liu C, et al. Identification of Four Oxidative Stress-Responsive MicroRNAs, miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p, in Hepatocellular Carcinoma. Oxidative Medicine and Cellular Longevity. 2017;2017:5189138. https://doi.org/10.1155/2017/5189138
49. Moradpour P, Daryanoosh F, Dashtiyan A, Taghi M, Jamhiri I. Impact of 6 weeks of intensive intermittent training with taking vitamin E on P53 changes in blood serum levels and visceral adipose tissue in Sprague-Dawley rats. Sport Science. 2017;10(Suppl. 1):98–103. [In Persian]. https://doi.org/10.5555/20183110814
50. Marzetti E, Lawler JM, Hiona A, Manini T, Seo AY, Leeuwenburgh C. Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radical Biology and Medicine. 2008;44(2):160–8. https://doi.org/10.1016/j.freeradbiomed.2007.05.028
51. Alipour MR, Naderi R, Alihemmati A, Sheervalilou R, Ghiasi R. Swimming training attenuates pancreatic apoptosis through miR-34a/Sirtu1 in1/P53 Axis in high-fat diet and Streptozotocin-induced Type-2 diabetic rats. Journal of Diabetes & Metabolic Disorders. 2020;19(2):1439–46. https://doi.org/10.1007/s40200-020-00670-6