نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری فیزیولوژی ورزشی، گروه علوم زیستی در ورزش، دانشکده علوم ورزشی و تندرستی، دانشگاه شهید بهشتی، تهران، ایران.
2 دانشیار گروه علوم زیستی در ورزش، دانشکده علوم ورزشی و تندرستی، دانشگاه شهید بهشتی، تهران، ایران.
چکیده
زمینه و هدف: با وجود پژوهشهای متناقض در زمینه اکسایش چربی ناشی از فعالیتهای سرعتی- توانی با وهلههای کمتر از 4-3 بار در روز، پژوهش حاضر، با هدف مقایسه تفاوت اکسیژن مصرفی اضافی پس از ورزش (EPOC)، نسبت تبادل تنفسی (RER) و اکسایش چربی/کربوهیدرات ناشی از فعالیتهای 20 – ثانیهای مبتنی بر آزمون وینگیت (20-sec WBE) یک و دو وهلهای، در مردان دارای اضافه وزن و چاق، انجام شد. روش تحقیق: پژوهش حاضر، در قالب یک طرح نیمهتجربی تک گروهی متقاطع با اندازهگیری مکرر طی دو مرحله (با یک هفته فاصله)، روی 14 مرد میانسال (میانگین سن 1/3±8/35 سال) داوطلب دارای اضافه وزن و یاچاق (شاخص توده بدنی بیش از 25 کیلوگرم بر متر مربع) انجام شد. دادههای گازهای تنفسی قبل، حین و ۳۰ دقیقه پس از فعالیت 20-sec WBE یک و دو وهلهای اندازهگیری گردید. گرم کردن در هر دو روش و بازیافت مابین دو وهله 20-sec WBE، شامل: 30 ثانیه رکابزنی (با سرعت 70-60 دور/دقیقه) با باری معادل یک چهارم 5/7 درصد وزن بدن و نسبت فعالیت به بازیافت 1:1 بدون بار بود که با یک دوره رکابزنی سه دقیقهای بدون بار (با سرعت 60 دور/دقیقه) ادامه یافت. دادهها با استفاده از آزمونهای t زوجی و تحلیل واریانس با اندازه گیری مکرر در سطح معنیداری p≤0/05 بررسی شد. یافتهها: هزینه انرژی تام و دوره بازیافت، EPOC، و اکسایش کربوهیدرات تام در روش دو وهلهای به طور معنیدار بیشتر از روش یک وهلهای بود؛ در حالی که تفاوت معنیداری بین اکسایش چربی نقطهای و تام (از ابتدای گرم کردن تا انتهای دوره بازیافت 30 دقیقهای)، مشاهده نشد. همچنین، تفاوت RER دوره بازیافت، فعالیت یک و دو وهلهای معنیدار نبود. نتیجهگیری: افزایشEPOC و هزینه انرژی روزانه پس از انجام تنها یک یا دو وهله فعالیت مبتنی بر آزمون وینگیت (40-20 ثانیه/روز)، میتواند راهبرد مناسبی برای بهبود اکسایش چربی برای افراد دارای اضافه وزن/چاق با محدودیت زمانی برای ورزش باشد.
کلیدواژهها
عنوان مقاله [English]
Effect of one-and two-high-intensity Wingate-based exercise on fat oxidation in overweight/obese men
نویسندگان [English]
- Banipal Tataro 1
- Afshar Jafari 2
1 PhD Student in Exercise Physiology, Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran.
2 Associate Professor in Department of Biological Sciences in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran.
چکیده [English]
Background and Aim: Based on conflicting findings regarding fat oxidation induced by high-power (sprint) exercise with less than 3-4 bouts/day, the present study investigated the effect of a single and two-bout 20-second Wingate-based exercise (20-sec WBE) on excess post oxygen consumption (EPOC), respiratory exchange ratio (RER), and fat/carbohydrate oxidation rate in overweight/obese men. Materials and Methods: Fourteen middle-aged (mean 35.8±3.1 years) obese and overweight males (body mass index>25 kg/m2) voluntarily participated in a semi-experimental, within-subject, crossover study design (with a single week washout). Respiratory gas data were measured before, during, and 30 minutes after one- and two-bout 20-second high-power (sprint) 20-sec WBE. Warm-up in both protocols and interval in the two-20 sec WBE protocol consisted of 30 sec WBE (at speed 60-70 RPM) with an exercise-to-recovery ratio 1:1 with or without a quarter of 7.5 percent of body weight that continued cycling at 60 RPM with no resistance for three minutes. The data were analyzed using paired-t and repeated ANOVA tests at a significance level of p≤0.05. Results: The energy cost during exercise and recovery, EPOC rate, and total carbohydrate oxidation in the two-bout protocol were significantly higher than in the one-bout protocol. However, the instantaneous and the total accumulated fat oxidation differences (from the beginning to the end of the 30-minute recovery) were not significant between the two protocols. However, no significant difference were found in RER between the two protocols. Conclusion: Increasing EPOC and daily energy expenditure after only a single- or two-Wingate-based sprint exercise (20-40 sec/day) may be a suitable strategy to improve fat oxidation for those overweight/obese people who do not have spare time to exercise.
کلیدواژهها [English]
- Obesity
- overweight
- Short-term sprint exercise
- Excess oxygen consumption after exercise
- Fat oxidation
- Respiratory exchange ratio
Amaro-Gahete, F.J., Jurado-Fasoli, L., Triviño, A.R., Sanchez-Delgado, G., Helge, J. W., & Ruiz, J.R. (2019). Diurnal variation of maximal fat-oxidation rate in trained male athletes. International Journal of Sports Physiology and Performance, 14(8), 1140-1146. https://doi.org/10.1123/ijspp.2018-0854
Aslankeser, Z., & Balcı, S.S. (2018). The acute effect of a single exhaustive sprint exercise session on post-exercise fat oxidation rate. Biomedical Human Kinetics, 10, 118 - 126. https://doi.org/10.1515/bhk-2018-0018
Burns, S.F., Oo, H.H., & Tran, A.T.T. (2012). Effect of sprint interval exercise on postexercise metabolism and blood pressure in adolescents. International Journal of Sport Nutrition and Exercise Metabolism, 22(1), 47-54. https://doi.org/10.1123/ijsnem.22.1.47
Chan, H.H., & Burns, S.F. (2013). Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise. Applied Physiology, Nutrition, and Metabolism, 38(2), 182-187. https://doi.org/10.1139/apnm-2012-0136
Fritzen, A.M., Broskey, N.T., Lundsgaard, A.M., Dohm, G.L., Houmard, J.A., & Kiens, B. (2022). Regulation of fatty acid oxidation in skeletal muscle during exercise: Effect of Ooesity. In Exercise Metabolism, 161-188. Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-030-94305-9_8
Fuentes, T., Guerra, B., Ponce-González, J.G., Morales-Alamo, D., Guadalupe-Grau, A., Olmedillas, H., ... Fernández-Pérez, L. (2012). Skeletal muscle signaling response to sprint exercise in men and women. European Journal of Applied Physiology, 112, 1917-1927. https://doi.org/10.1007/s00421-011-2164-0
Hargreaves, M., & Spriet, L.L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817-828. https://doi.org/10.1038/s42255-020-0251-4
Hazell, T.J., Islam, H., Hallworth, J.R., & Copeland, J.L. (2017). Total PYY and GLP-1 responses to submaximal continuous and supramaximal sprint interval cycling in men. Appetite, 108, 238-244. https://doi.org/10.1016/j.appet.2016.10.006
Hazell, T.J., Olver, T.D., Hamilton, C.D., & Lemon, P.W. (2012). Two minutes of sprint-interval exercise elicits 24-hr oxygen consumption similar to that of 30 min of continuous endurance exercise. International Journal of Sport Nutrition and Exercise Metabolism, 22(4), 276-283. https://doi.org/10.1123/ijsnem.22.4.276
Hill, J.O., Wyatt, H.R., Reed, G.W., & Peters, J.C. (2003). Obesity and the environment: where do we go from here? Science, 299(5608), 853-855. https://doi.org/10.1126/science.1079857
Islam, H., Townsend, L.K., & Hazell, T.J. (2018). Excess postexercise oxygen consumption and fat utilization following submaximal continuous and supramaximal interval running. Research Quarterly for Exercise and Sport, 89(4), 450-456. https://doi.org/10.1080/02701367.2018.1513633
Jung, W.-S., Hwang, H., Kim, J., Park, H.-Y., & Lim, K. (2020). Effect of accumulated vs continuous exercise on excess post-exercise oxygen consumption. Ethiopian Journal of Health Development, 34(3). https://www.ajol.info/index.php/ejhd/article/view/198767
Little, J.P., Langley, J., Lee, M., Myette-Côté, E., Jackson, G., Durrer, C., ... & Jung, M.E. (2019). Sprint exercise snacks: a novel approach to increase aerobic fitness. European Journal of Applied Physiology, 119(5), 1203-1212. https://doi.org/10.1007/s00421-019-04110-z
Matthew Laurent, C., Meyers, M.C., Robinson, C.A., & Matt Green, J. (2007). Cross-validation of the 20-versus 30-s Wingate anaerobic test. European Journal of Applied Physiology, 100(6), 645-651. https://doi.org/10.1007/s00421-007-0454-3
Metcalfe, R.S., Babraj, J.A., Fawkner, S.G., & Vollaard, N.B. (2012). Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. European Journal of Applied Physiology, 112(7), 2767-2775. https://doi.org/10.1007/s00421-011-2254-z
Metcalfe, R.S., Koumanov, F., Ruffino, J.S., Stokes, K.A., Holman, G.D., Thompson, D., & Vollaard, N. (2015). Physiological and molecular responses to an acute bout of reduced-exertion high-intensity interval training (REHIT). European Journal of Applied Physiology, 115, 2321-2334. https://doi.org/10.1007/s00421-015-3217-6
Panissa, V.L., Fukuda, D.H., Staibano, V., Marques, M., & Franchini, E. (2021). Magnitude and duration of excess of post‐exercise oxygen consumption between high‐intensity interval and moderate‐intensity continuous exercise: A systematic review. Obesity Reviews, 22(1), e13099. https://doi.org/10.1111/obr.13099
Ramírez-Maldonado, M., Jurado-Fasoli, L., Del Coso, J., Ruiz, J.R., & Amaro-Gahete, F.J. (2021). Caffeine increases maximal fat oxidation during a graded exercise test: is there a diurnal variation? Journal of the International Society of Sports Nutrition, 18(1), 5. https://doi.org/10.1186/s12970-020-00400-6
Sevits, K.J., Melanson, E.L., Swibas, T., Binns, S.E., Klochak, A.L., Lonac, M.C., ... & Smith, A.M. (2013). Total daily energy expenditure is increased following a single bout of sprint interval training. Physiological Reports, 1(5), 1-9. https://doi.org/10.1002/phy2.131.
Stroebele, N., Hill, J.O., & Willich, S.N. (2011). Identifying the energy gap in the German population using results from representative national health surveys (1985–2002). Public Health Nutrition, 14(1), 44-48. https://doi.org/10.1017/S1368980010000686
Ten Haaf, T., & Weijs, P. J. (2014). Resting energy expenditure prediction in recreational athletes of 18–35 years: confirmation of Cunningham equation and an improved weight-based alternative. PloS One, 9(10), e108460. https://doi.org/ 10.1371/journal.pone.0108460
Townsend, J.R., Stout, J.R., Morton, A.B., Jajtner, A.R., Gonzalez, A.M., Wells, A.J., ... & Robinson IV, E.H. (2013). Excess post-exercise oxygen consumption (EPOC) following multiple effort sprint and moderate aerobic exercise. Kinesiology, 45(1), 16. https://stars.library.ucf.edu/facultybib2010/4767
Trapp, E.G., Chisholm, D.J., & Boutcher, S.H. (2007). Metabolic response of trained and untrained women during high-intensity intermittent cycle exercise. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 273(6), 2370-2345. https://doi.org/10.1152/ajpregu.00780.2006
Tucker, W.J., Angadi, S.S., & Gaesser, G.A. (2016). Excess postexercise oxygen consumption after high-intensity and sprint interval exercise, and continuous steady-state exercise. Journal of Strength and Conditioning Research, 30(11), 3090-3097. https://doi.org/10.1519/JSC.0000000000001399
Whyte, L.J., Ferguson, C., Wilson, J., Scott, R.A., & Gill, J.M. (2013). Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentary men. Metabolism, 62(2), 212-219. https://doi.org/10.1016/j.metabol.2012.07.019
Williams, C. ., Zelt, J.G., Castellani, L.N., Little, J.P., Jung, M.E., Wright, D.C., ... & Gurd, B. J.(2013). Changes in mechanisms proposed to mediate fat loss following an acute bout of high-intensity interval and endurance exercise. Applied Physiology, Nutrition, and Metabolism, 38(12), 1236-1244. https://doi.org/10.1139/apnm-2013-0101