نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه زابل، زابل، ایران.

2 استادیار گروه تربیت بدنی و علوم ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه نیشابور، نیشابور، ایران.

3 استادیار گروه تربیت بدنی و علوم ورزشی، دانشگاه ملی مهارت، تهران، ایران.

4 دکتری فیزیولوژی ورزشی، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، ایران.

چکیده

زمینه و هدف: مطالعات نشان داده است که گرملین-1 در اختلال عملکرد بافت چربی در چاقی، دیابت نوع دو و اختلالات متابولیک؛ نقش دارد. هدف از مطالعه حاضر، بررسی تاثیر تمرینات عملکردی با شدت بالا بر سطوح گرملین-1 و مقاومت به انسولین در زنان دارای اضافه وزن و چاق بود. روش تحقیق: در این مطالعه نیمه‌تجربی، 20 زن دارای اضافه وزن و چاق به صورت تصادفی در دو گروه تمرین عملکردی با شدت بالا (10 نفر) و کنترل (10 نفر) تقسیم شدند. آزمودنی‌های گروه‌ تمرینی سه جلسه در هفته به مدت هشت هفته به اجرای تمرینات عملکردی با شدت بالا پرداختند. به منظور اندازه‌گیری گلوکز ناشتا، مقاومت به انسولین و گرملین-1 قبل و پس از مداخله، از آزمودنی‌ها نمونه‌های خونی به عمل آمد. برای تحلیل داده‌ها در نرم افزار SPSS نسخه 16، از آزمون‌های تحلیل کوواریانس و t زوجی در سطح معنی‌داری 05/0>p استفاده شد. یافته ها: بعد از هشت هفته تمرینات عملکردی با شدت بالا، وزن بدن (001/0=p)، شاخص توده بدنی (001/0=p)، درصد چربی (001/0=p)، گلوکز ناشتا (001/0=p)، شاخص مقاومت به انسولین (001/0=p) و غلظت گرملین-1 (03/0=p) ؛ در گروه تجربی نسبت به گروه کنترل به طور معنی‌داری کاهش یافت. نتیجه گیری: نتایج مطالعه حاضر نشان داد تمرینات عملکردی با شدت بالا در زنان دارای اضافه وزن و چاق، منجر به بهبود سطوح گرملین-1 و مقاومت به انسولین می‌گردد؛ بنابراین، از این نوع تمرینات می‌توان به عنوان مداخلات تمرینی کمکی در کنترل و کاهش عوارض مرتبط با اضافه وزن و چاقی استفاده کرد. 

کلیدواژه‌ها

عنوان مقاله [English]

The effect of high-intensity functional training on Gremlin-1 levels and insulin resistance in overweight and obese women

نویسندگان [English]

  • Javad Nakhzari Khodakheir 1
  • Mehdi Zarei 2
  • Hamid Reza Zolfi 3
  • Amir Shakib 4

1 Assistant Professor at Department of Physical Education and Sport Sciences, School of Human Sciences, University of Zabol, Zabol, Iran.

2 Assistant Professor at Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, University of Neyshabur, Neyshabur, Iran.

3 Assistant Professor at Department of Physical Education and Sport Science, National University of Skills (NUS), Tehran, Iran.

4 PhD Student in Exercise Physiology, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.

چکیده [English]

Background and Aim: Studies have shown that Gremlin-1 can be involved in adipose tissue dysfunction such as obesity, type II diabetes and metabolic disorders. The aim of this study was to investigate the effect of high-intensity functional training on Gremlin-1 levels and insulin resistance in overweight and obese women. Materials and Methods: In this semi-experimental study, 20 overweight and obese women were randomly divided into high-intensity functional training (n=10) and control (n=10) groups. The subjects performed high-intensity functional exercises three times a week during eight weeks. Moreover, blood samples were taken from subjects to measure fasting glucose, insulin resistance, and Gremlin-1 levels before and after the intervention.  Data analyzed by SPSS software version 16, based on the covariance and paired t tests at a significance level of p<0.05. Results: After eight weeks of high-intensity functional training, body weight (p=0.001), body mass index (p=0.001), fat percentage (p=0.001), fasting glucose (p=0.001), insulin resistance index (p=0.001) and Gremlin 1 concentration (p=0.03) were significantly reduced in the experimental group compared to control group.  Conclusion: The results of the present study showed that high-intensity functional training in overweight and obese women leads to a improve Gremlin-1 levels and insulin resistance; therefore, these types of exercises can be used as exercise interventions in controlling and reducing complications related to overweight and obesity.

کلیدواژه‌ها [English]

  • Functional exercise training
  • Gremlin-1
  • Insulin resistance
  • Obesity and overweight
  • Women
Al-Regaiey, K.A., Habib, S.S., Alshamasi, A.R., Alnuwaybit, A.F., Alwhaibi, B.A., Alsulais, N.M., ... & Iqbal, M. (2022). Relationship of plasma Gremlin 1 levels with body adiposity and glycemic control in Saudi female type 2 diabetes patients. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 3429-3436. https://doi.org/10.2147/DMSO.S372146
Archer, E., & Lavie, C.J. (2022). Obesity subtyping: The etiology, prevention, and management of acquired versus inherited obese phenotypes. Nutrients, 14(11), 2286. https://doi.org/10.3390/nu14112286
Ben-Zeev, T., & Okun, E. (2021). High-intensity functional training: Molecular mechanisms and benefits. Neuromolecular Medicine, 23(3), 335-338. https://doi.org/10.1007/s12017-020-08638-8
Brisebois, M.F., Rigby, B.R., & Nichols, D.L. (2018). Physiological and fitness adaptations after eight weeks of high-intensity functional training in physically inactive adults. Sports, 6(4), 146. https://doi.org/10.3390/sports6040146
Chen, P.B., Yang, J.S., & Park, Y. (2018). Adaptations of skeletal muscle mitochondria to obesity, exercise, and polyunsaturated fatty acids. Lipids, 53(3), 271-278. https://doi.org/10.1002/lipd.12037
Cheng, J.X., & Ke, Y. (2022). New discovered adipokines associated with the pathogenesis of obesity and type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2381-2389. https://doi.org/10.2147/DMSO.S376163
Duffy, L., Henderson, J., Brown, M., Pryzborski, S., Fullard, N., Summa, L., & O’Reilly, S. (2021). Bone morphogenetic protein antagonist gremlin-1 increases myofibroblast transition in dermal fibroblasts: implications for systemic sclerosis. Frontiers in Cell and Developmental Biology, 9, 681061. https://doi.org/10.3389/fcell.2021.681061
Fabre, O., Giordani, L., Parisi, A., Pattamaprapanont, P., Ahwazi, D., Brun, C., ... & Barrès, R. (2020). GREM1 is epigenetically reprogrammed in muscle cells after exercise training and controls myogenesis and metabolism. BioRxiv, 2020-02. https://doi.org/10.1101/2020.02.20.956300
Fealy, C.E., Nieuwoudt, S., Foucher, J.A., Scelsi, A.R., Malin, S.K., Pagadala, M., & Kirwan, J.P. (2018). Functional high‐intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes. Experimental Physiology, 103(7), 985-994. http://doi.org/10.1113/EP087063.
Feito, Y., Heinrich, K., Butcher, S., & Poston, W. (2018). High-intensity functional training (hift): definition and research implications for improved fitness. Sports, 6(3), 76. https://doi.org/10.3390/sports6030076
Feito, Y., Patel, P., Sal Redondo, A., & Heinrich, K.M. (2019). Effects of eight weeks of high intensity functional training on glucose control and body composition among overweight and obese adults. Sports, 7(2), 51. https://doi.org/10.3390/sports7020051
Gonzalo-Encabo, P., Maldonado, G., Valadés, D., Ferragut, C., & Pérez-López, A. (2021). The role of exercise training on low-grade systemic inflammation in adults with overweight and obesity: A systematic review. International Journal of Environmental Research and Public Health, 18(24), 13258. https://doi.org/10.3390/ijerph182413258
Grillo, E., Ravelli, C., Colleluori, G., D’Agostino, F., Domenichini, M., Giordano, A., & Mitola, S. (2023). Role of gremlin-1 in the pathophysiology of the adipose tissues. Cytokine & Growth Factor Reviews, 69, 51-60. https://doi.org/10.1016/j.cytogfr.2022.09.004
Gustafson, B., Hammarstedt, A., Hedjazifar, S., Hoffmann, J.M., Svensson, P.A., Grimsby, J., ... & Smith, U. (2015). BMP4 and BMP antagonists regulate human white and beige adipogenesis. Diabetes, 64(5), 1670-1681. https://doi.org/10.2337/db14-1127
Hedjazifar, S., Khatib Shahidi, R., Hammarstedt, A., Bonnet, L., Church, C., Boucher, J., & Smith, U. (2020). The novel adipokine Gremlin 1 antagonizes insulin action and is increased in type 2 diabetes and NAFLD/NASH. Diabetes, 69(3), 331-341. https://doi.org/10.2337/db19-0701
Iwabu, M., Yamauchi, T., Okada-Iwabu, M., Sato, K., Nakagawa, T., Funata, M., ... & Kadowaki, T. (2010). Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature, 464(7293), 1313-1319. https://doi.org/10.1038/nature08991
Kapsis, D.P., Tsoukos, A., Psarraki, M.P., Douda, H.T., Smilios, I., & Bogdanis, G.C. (2022). Changes in body composition and strength after 12 weeks of high-intensity functional training with two different loads in physically active men and women: A randomized controlled study. Sports, 10(1), 7. https://doi.org/10.3390/sports10010007
Karami, M., Daloii, A.A., & Saeidi, A. (2022). The effect of different intensity circuit resistance training on gremlin-1, Macrophage migration inhibitory factor and some cardiovascular risk factors in obese men. Journal of Sport & Exercise Physiology, 15(3), 1-10. https://doi.org/10.52547/joeppa.15.3.1
Khalafi, M., Symonds, M.E., Ghasemi, F., Rosenkranz, S.K., Rohani, H., & Sakhaei, M.H. (2023). The effects of exercise training on postprandial glycemia and insulinemia in adults with overweight or obesity and with cardiometabolic disorders: a systematic review and meta-analysis. Diabetes Research and Clinical Practice, 201, 110741. https://doi.org/10.1016/j.diabres.2023.110741
La Scala Teixeira, C.V., Caranti, D.A., Oyama, L.M., Padovani, R.D.C., Cuesta, M.G. S., Moraes, A.D.S., ... & Gomes, R.J. (2020). Effects of functional training and 2 interdisciplinary interventions on maximal oxygen uptake and weight loss of women with obesity: a randomized clinical trial. Applied Physiology, Nutrition, and Metabolism, 45(7), 777-783.doi: https://doi.org/10.1139/apnm-2019-0766
Marcelin, G., Gautier, E.L., & Clément, K. (2022). Adipose tissue fibrosis in obesity: etiology and challenges. Annual Review of Physiology, 84, 135-155. https://doi.org/10.1146/annurev-physiol-060721-092930
Murawska-Cialowicz, E., de Assis, G.G., Clemente, F.M., Feito, Y., Stastny, P., Zuwala-Jagiello, J., ... & Wolanski, P. (2021). Effect of four different forms of high intensity training on BDNF response to Wingate and Graded Exercise Test. Scientific Reports, 11(1), 8599. https://doi.org/10.1038/s41598-021-88069-y
Nieuwoudt, S., Fealy, C.E., Foucher, J.A., Scelsi, A.R., Malin, S.K., Pagadala, M., ... & Kirwan, J.P. (2017). Functional high-intensity training improves pancreatic β-cell function in adults with type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism, 313(3), E314-E320. https://doi.org/10.1152/ajpendo.00407.2016
O’Reilly, S., Ciechomska, M., Cant, R., & van Laar, J.M. (2014). Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-β (TGF-β) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. Journal of Biological Chemistry, 289(14), 9952-9960. https://doi.org/10.1074/jbc.M113.545822
Posnakidis, G., Aphamis, G., Giannaki, C.D., Mougios, V., Aristotelous, P., Samoutis, G., & Bogdanis, G.C. (2022). High-intensity functional training improves cardiorespiratory fitness and neuromuscular performance without inflammation or muscle damage. Journal of Strength and Conditioning Research, 36(3), 615-623. https://doi.org/10.1519/JSC.0000000000003516
Rodriguez, J., Neyrinck, A.M., Van Kerckhoven, M., Gianfrancesco, M.A., Renguet, E., Bertrand, L., & Delzenne, N.M. (2022). Physical activity enhances the improvement of body mass index and metabolism by inulin: a multicenter randomized placebo-controlled trial performed in obese individuals. BMC Medicine, 20(1), 1-20. https://doi.org/10.1186/s12916-022-02299-z
Saeidi, A., Nouri-Habashi, A., Razi, O., Ataeinosrat, A., Rahmani, H., Mollabashi, S. S., & Zouhal, H. (2023). Astaxanthin supplemented with high-intensity functional training decreases adipokines levels and cardiovascular risk factors in men with obesity. Nutrients, 15(2), 286. https://doi.org/10.3390/nu15020286
Saeidi, A., Seifi-Ski-Shahr, F., Soltani, M., Daraei, A., Shirvani, H., Laher, I., ... & Zouhal, H. (2023). Resistance training, gremlin 1 and macrophage migration inhibitory factor in obese men: a randomised trial. Archives of Physiology and Biochemistry, 129(3), 640-648. https://doi.org/10.1080/13813455.2020.1856142
Sarafidis, P.A., Lasaridis, A.N., Nilsson, P.M., Pikilidou, M.I., Stafilas, P.C., Kanaki, A., & Bakris, G.L. (2007). Validity and reproducibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley’s indices in patients with hypertension and type II diabetes. Journal of Human Hypertension, 21(9), 709-716. https://doi.org/10.1038/sj.jhh.1002201
Shahsavar, M.R S. (2022). The effect of caloric restriction along with functional training and acidic and alkaline diet on body composition, lipid concentration andC-reactive protein in overweight adults1. Applied Biology, 12(48), 81-102. [In Persian].  https://journals.iau.ir/article_703684.html. 
Smith, L.E., Van Guilder, G.P., Dalleck, L.C., & Harris, N.K. (2022). The effects of high-intensity functional training on cardiometabolic risk factors and exercise enjoyment in men and women with metabolic syndrome: study protocol for a randomized, 12-week, dose-response trial. Trials, 23(1), 182. https://doi.org 10.1186/s13063-022-06100-7
Sobrero, G., Arnett, S., Schafer, M., Stone, W., Tolbert, T.A., Salyer-Funk, A., & Maples, J. (2017). A comparison of high intensity functional training and circuit training on health and performance variables in women: a pilot study. Women in Sport and Physical Activity Journal, 25(1), 1-10. https://doi.org/10.1123/wspaj.2015-0035
Soltani, N., Marandi, S.M., Kazemi, M., & Esmaeil, N. (2020). The exercise training modulatory effects on the obesity-induced immunometabolic dysfunctions. Diabetes, Metabolic Syndrome and Obesity, 13, 785-810. https://doi.org/10.2147/DMSO.S234992
Thomas, S., Reading, J. & Shephard, R.J. (1992). Revision of the physical activity readiness questionnaire (PAR-Q). Canadian Journal of Sport Sciences (Journal Canadien des Sciences du Sport), 17(4), 338-345.
Westphal, G., Baruki, S.B. S., de Mori, T.A., de Lima Montebelo, M.I., & Pazzianotto-Forti, E.M. (2020). Effects of individualized functional training on the physical fitness of women with obesity. Lecturas: Educación Física y Deportes, 25(268). https://doi.org/10.46642/efd.v25i268.2084
You, T., Arsenis, N. ., Disanzo, B.L., & LaMonte, M.J. (2013). Effects of exercise training on chronic inflammation in obesity: current evidence and potential mechanisms. Sports Medicine, 43, 243-256. https://doi.org/10.1007/s40279-013-0023-3