تاثیر انواع فعالیت ورزشی بر بیان ژن‌های مرتبط با هدایت قلبی در رت‌های سالمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی، دانشکده علوم ورزشی و تندرستی، دانشگاه شهید بهشتی، تهران، ایران.

2 استاد گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی و تندرستی، دانشگاه شهید بهشتی، تهران، ایران.

3 استادیار گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی و تندرستی، دانشگاه شهید بهشتی، تهران، ایران.

4 استاد گروه گردش خون و تصویربرداری پزشکی، دانشکده پزشکی و علوم بهداشت، دانشگاه علم و صنعت نروژ (NTNU)، تروندهایم، نروژ

چکیده

زمینه و هدف: در دوران سالمندی مشکلات هدایت قلبی و آریتمی، یکی از علل اصلی مرگ و میر در این افراد است. هدف از مطالعه حاضر بررسی تاثیر انواع فعالیت ورزشی بر بیان ژن‌‌های مرتبط با هدایت قلبی در رت‌های سالمند بود. روش تحقیق: آزمودنی‌های این مطالعه 24 سر رت نر ویستار 23 ماهه با وزن 45±465 گرم بودند که پس از تعیین حداکثر بار فعالیت، به‌طور تصادفی در چهار گروه مساوی (هر گروه شش سر) شامل کنترل، فعالیت شنای تداومی با شدت متوسط (MICE)، فعالیت شنای تناوبی با شدت و حجم بالا (HIIE-HV) و فعالیت شنای تناوبی با شدت بالا و حجم کم (HIIE-LV) قرار گرفتند. بعد از اتمام فعالیت، رت‌ها سریعا بیهوش و تشریح شدند. بافت گره های SA و AV قلبی برای بیان ژن‌های عامل 4رونویسی GATA (GATA4)، پروتئین کیناز B (AKT)، عامل پیش برنده میوسیت C2 (MEF2C) و عامل 5 رونویسی T-box (Tbx5) مورد استفاده قرار گرفت. به منظور بررسی بیان ژن های مذکور از روش آزمایشگاهی Real-time PCR  استفاده شد. برای بررسی نتایج از آزمون تحلیل واریانس یک راهه و آزمون تعقیبی توکی در سطح 05/0>p استفاده شد. یافته‌ها: تحلیل داده‌ها نشان داد HIIE-HV درگره SA و AV باعث افزایش معنی دار بیان ژن های AKT1 (به ترتیب با 0/001=p و 0/001=p)، GATA4 (به ترتیب با 0/001=p و 0/001=p)، MEF2C (به ترتیب با 0/01=p و 0/001=p) و Tbx5 (به ترتیب با 0/001=p و 0/001=p) شد. HIIE-LV فقط در گره SA باعث افزایش معنی بیان ژن‌های AKT1 (0/01=p)، GATA4 (0/005=p ) و Tbx5 (0/009=p) شد؛ در حالیکه بیان ژن های AKT1 (0/43 =p)، GATA4 (0/21=p)، Tbx5 (0/19=p) و MEF2C (0/44=p) در گره AV تغییر معنی داری نداشت. هم چنین در پاسخ به MICE، در گره SA و AV بیان ژن های AKT1 (به ترتیب با 0/29=p و 0/11=p)، GATA4 (به ترتیب با 0/15 =p و 0/72=p)، MEF2C (به ترتیب با 0/31=p و 0/85=p) و Tbx5 (به ترتیب با 0/98=p و 0/84=p) تغییر معنی داری نداشت. نتیجه گیری: تحقیق حاضر نشان داد HIIE-HV و HIIE-LV نسبت MICE می تواند باعث افزایش معنی دار بیان ژن های مرتبط با هدایت قلبی در رت‌های سالمند شود و این تغییرات می تواند باعث ارتقاء عملکرد سیستم هدایت الکتریکی قلب، بهبود آریتمی و کاهش مرگ و میر در افراد سالمند شود.  

کلیدواژه‌ها


عنوان مقاله [English]

The effect of different acute exercises on the expression of genes responsible for cardiac conduction in elderly rats

نویسندگان [English]

  • Zahra Amraei 1
  • Sajad Ahmadizad 2
  • Rana Fayazmilani 3
  • Ulrik Wisloff 4
1 PhD Student in Exercise Physiology, Faculty of Sport and Health Sciences, Shahid Beheshti University, Tehran, Iran.
2 Professor at Faculty of Sport and Health Sciences, Shahid Beheshti University, Tehran, Iran.
3 Assistant Professor at Faculty of Sport and Health Sciences, Shahid Beheshti University, Tehran, Iran.
4 Professor at Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
چکیده [English]

Extended Abstract
Background and Aim: Aging is a significant risk factor for the development of cardiac conduction disorders like arrhythmia. It impairs  cardiac conduction by disrupting the electrical conduction channels in the heart. Among the most evident physiological changes associated with aging are the morphological alterations in the cardiovascular system. Unfortunately, these changes diminish the overall function of the cardiovascular system, particularly affecting the cardiac conduction system in elderly individuals.
 Numerous studies have shown that the function of these channels and connexins is regulated by various genes, including GATA transcription factor 4 (GATA4), protein kinase B (AKT), myocytes enhancer factor type 2C (MEF2C), and T-box transcription factor 5 (Tbx5). Additionally, research suggests that physical activity and exercise can mitigate the progression of cardiac conduction disorders in aging individuals.. The aim of this study was to investigate the effect of different acute exercises on the expression of genes responsible for cardiac conduction in elderly rats. 
Materials and Methods: Twenty-four old male Wister rats (23 months, weigh 465±45 g) were recruited and divided into four groups (each group consist of six elderly rats), include of control, moderate intensity continuous exercise (MICE), high intensity interval exercise-low volume (HIIE-LV), and high intensity interval exercise-high volume (HIIE-HV) groups. Rats were maintained under controlled conditions with 75–85% humidity, 23±2°C temperature, and a 12-h light–dark cycle. 
Prior to the commencement of the study, ethical approval was obtained from the Ethics Committee for Biological Research at Shahid Beheshti University. All rats underwent a familiarization protocol to acclimate them to the pool and the exercise regimen. This protocol involved placing the rats in shallow water at 32°C for three consecutive days, with each session lasting 10 minutes.
Following the familiarization phase, the maximum exercise load for each rat was individually determined to establish exercise intensity and workload. To assess the maximum exercise load, a metal weight equivalent to 5% of the rat’s body weight was attached to the end of their tails using leucoplast tape. After a warm-up period, the workload was increased by 1 g every five minutes of swimming until the rats reached exhaustion. The maximum exercise load was defined as the highest load the rats could carry until exhaustion.
The MICE protocol consisted of 35 min swimming at 65% of maximal workload. The HIIE-HV consisted of 35 min interval swimming encompassed five sets of four min swimming at 85% of maximal workload and three min of passive recovery. The HIIE-LV consisted of seven min interval swimming encompassed 14 sets of 30 s swimming at 110 % of maximal workload interspersed by 30 s of passive recovery. After exercise sessions, all rats were anesthetized and sacrificed. SA and AV node tissue was used to examine the expression of GATA4, AKT, MEF2C, and Tbx5. Real-Time Quantitative PCR was used to analyses gene expression. For data analysis, One-way ANOVA and Tukey post hoc tests were utilized at p<0.05 level.
Results: Analysis of the data revealed that the expression of AKT1 (p=0.001 in the SA node and p=0.001 in the AV node), GATA4 (p=0.001 in both nodes), MEF2C (p=0.01 in the SA node and p=0.001 in the AV node), and Tbx5 (p=0.001 in both nodes) genes increased significantly after HIIE-HV compared to the control group.
In the SA node, the expression of AKT1 (p=0.01), GATA4 (p=0.005), and Tbx5 (p=0.009) genes also increased significantly after HIIE-LV compared to the control group. However, the expression of AKT1 (p=0.43), GATA4 (p=0.21), Tbx5 (p=0.19), and MEF2C (p=0.44) genes in the AV node did not change significantly.
In response to MICE, the expression of AKT1 (p=0.29 in the SA node and p=0.11 in the AV node), GATA4 (p=0.15 in the SA node and p=0.72 in the AV node), MEF2C (p=0.31 in the SA node and p=0.85 in the AV node), and Tbx5 (p=0.98 in the SA node and p=0.84 in the AV node) did not change significantly in either the SA or AV nodes (Table 1).
Conclusion: The HIIE-LV and HIIE-HV significantly increase the expression of genes related to cardiac conduction in elderly rats compared to MICE. This increase may enhance the function of the cardiac electrical conduction system, improve arrhythmias, and reduce mortality in elderly individuals by activating various molecular and cellular signaling pathways. Despite the limited information available on the signals associated with cardiac conduction and exercise, it appears that calcium-related mechanisms (such as calcium calmodulin and protein kinase C), mechanisms related to the tension-stretch of the atrial and ventricular walls during diastolic filling (increased preload and activation of focal adhesion kinase, FAK), and mechanisms related to cellular metabolism (protein kinase A and cyclic AMP, cAMP) are likely candidates for mediating the expression of cardiac conduction genes in response to exercise. Additionally, this study found that the expression of genes related to cardiac conduction in the SA node increased significantly even with intense exercise of short duration (seven minutes). In contrast, in the AV node, the expression of these genes increased significantly only with prolonged intense exercise. Although a specific mechanism explaining the differential expression of these genes in the SA and AV nodes has not yet been proposed, it is suggested that the varying degrees of stimulation from the autonomic nervous system (including parasympathetic inhibition and sympathetic activation) may contribute to these differences.
Ethical Considerations: This study was conducted based on the ethical guidelines for animal studies. The study protocol was approved by the Ethics Committee of Shahid Beheshti University Ethics Code: IR.SBU.REC.1403.134.
Compliance with Ethical Guidelines: Throughout all stages of the present study, all ethical principles for working with laboratory animals were observed following the NIH, IASP, and ARRIVE guidelines for the care and use of laboratory animals.
Funding: This study received no funding from public, commercial, or nonprofit organizations.
Conflicts of Interest: The authors declare no conflict of interest.

کلیدواژه‌ها [English]

  • Continuous swimming
  • Interval swimming
  • Aging
  • Cardiac conduction
  • Cardiac gene expression. 
1. Gadó K, Szabo A, Markovics D, Virág A. Most common cardiovascular diseases of the elderly–A review article. Developments in Health Sciences. 2022 Mar 16;4(2):27-32. http://doi.org/ 10.1556/2066.2021.00048.
2. Curtis AB, Karki R, Hattoum A, Sharma UC. Arrhythmias in patients≥ 80 years of age: pathophysiology, management, and outcomes. Journal of the American College of Cardiology. 2018 May 8;71(18):2041-57. http://doi.org/10.1016/j.jacc.2018.03.019.    
3. van Eif VW, Devalla HD, Boink GJ, Christoffels VM. Transcriptional regulation of the cardiac conduction system. Nature Reviews Cardiology. 2018 Oct;15(10):617-30.http://doi.org/10.1038/s41569-018-0031-y.
4. Choquet C, Boulgakoff L, Kelly RG, Miquerol L. New insights into the development and morphogenesis of the cardiac purkinje fiber network: Linking architecture and function. Journal of Cardiovascular Development and Disease. 2021 Aug 7;8(8):95. http://doi.org/10.3390/jcdd8080095.
5. Park DS, Fishman GI. Development and function of the cardiac conduction system in health and disease. Journal of Cardiovascular Development and Disease. 2017;4(2):7 .http://doi.org/.10.3390/jcdd4020007.
6. Mirza M, Strunets A, Shen WK, Jahangir A. Mechanisms of arrhythmias and conduction disorders in older adults. Clinics in Geriatric Medicine. 2012;28(4):555-73. http://doi.org/ 10.1016/j.cger.2012.08.005.
7. Vedantham V, Evangelista M, Huang Y, Srivastava D. Spatiotemporal regulation of an Hcn4 enhancer defines a role for Mef2c and HDACs in cardiac electrical patterning. Developmental Biology. 2013;373(1):149-62. http://doi.org/10.1016/j.ydbio.2012.10.017.
8. Bruneau BG. Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harbor Perspectives in Biology. 2013;5(3):a008292. http://doi.org/10.1101/cshperspect.a008292.
9. Nemer M, Gharibeh L. Guiding cardiac conduction with GATA. Circulation: Cardiovascular Genetics. 2015;8(2):247-9. http://doi.org/10.1161/CIRCGENETICS.115.001039.
10. Munshi NV. Gene regulatory networks in cardiac conduction system development. Circulation Research. 2012;110(11):1525-37.https://doi.org/10.1161/CIRCRESAHA.111.26002.
11. Guiraud T, Labrunee M, Gaucher-Cazalis K, Despas F, Meyer P, et al. High-intensity interval exercise improves vagal tone and decreases arrhythmias in chronic heart failure. Medicine & Science in Sports & Exercise. 2013;45(10):1861-7. http://doi.org/10.1249/MSS.0b013e3182967559.
12. Dor‐Haim H, Lotan C, Horowitz M, Swissa M. Intensive exercise training improves cardiac electrical stability in myocardial‐infarcted rats. Journal of the American Heart Association. 2017;6(7):e005989. http://doi.org/10.1161/JAHA.117.005989.
13. Chang Y, Yu T, Yang H, Peng Z. Exhaustive exercise-induced cardiac conduction system injury and changes of cTnT and Cx43. International Journal of Sports Medicine. 2015;36(01):1-8. http://doi.org/10.1055/s-0034-1384545.
14. Stølen TO, Høydal MA, Ahmed MS, Jørgensen K, Garten K, Hortigon-Vinagre MP, Zamora V, Scrimgeour NR, Berre AM, Nes BM, Skogvoll E. Exercise training reveals micro-RNAs associated with improved cardiac function and electrophysiology in rats with heart failure after myocardial infarction. Journal of Molecular and Cellular Cardiology. 2020;148:106-19. http://doi.org/10.1016/j.yjmcc.2020.08.015.
15. McGee SL. Exercise and MEF2–HDAC interactions. Applied Physiology, Nutrition, and Metabolism. 2007;32(5):852-6. http://doi.org/10.1139/H07-082.
16. Ginnan R, Sun LY, Schwarz JJ, Singer HA. MEF2 is regulated by CaMKIIδ2 and a HDAC4–HDAC5 heterodimer in vascular smooth muscle cells. Biochemical Journal. 2012;444(1):105-14. http://doi.org/10.1042/BJ20120152.
17. Han Y, Nie J, Wang DW, Ni L. Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Frontiers in Cardiovascular Medicine. 2022;9:931475. https://doi.org/10.3389/fcvm.2022.931475.
18. Cardoso AC, Pereira AH, Ambrosio AL, Consonni SR, de Oliveira RR, Bajgelman MC, et al. FAK forms a complex with MEF2 to couple biomechanical signaling to transcription in cardiomyocytes. Structure. 2016 Aug 2;24(8):1301-10. http://doi.org/10.1016/j.str.2016.06.003.
19. Neves JS, Leite-Moreira AM, Neiva-Sousa M, Almeida-Coelho J, Castro-Ferreira R, Leite-Moreira AF. Acute myocardial response to stretch: what we (don’t) know. Frontiers in Physiology. 2016;6:408. https://doi.org/10.3389/fphys.2015.00408.
20. Xiong H, Hua F, Dong Y, Lin Y, Ying J, Liu J, et al. DNA damage response and GATA4 signaling in cellular senescence and aging-related pathology. Frontiers in Aging Neuroscience. 2022;14:933015. https://doi.org/10.3389/fnagi.2022.933015.
21. Mazaheri NM, Sabbagh SK, Shahramian I, Noori NM. Expression analysis of Gata4, Tbx5 and Nkx2. 5 genes involved in congenital heart disease. Zahedan Journal of Research in Medical Sciences. 2016;18(4):e6448. https://doi.org/ 10.17795/zjrms-6448.
22. Harris JP, Bhakta M, Bezprozvannaya S, Wang L, Lubczyk C, Olson EN, Munshi NV. MyoR modulates cardiac conduction by repressing Gata4. Molecular and Cellular Biology. 2015;35(4):649-61. http://doi.org/10.1128/MCB.00860-14.
23. Pahlavani HA. Exercise-induced signaling pathways to counteracting cardiac apoptotic processes. Frontiers in Cell and Developmental Biology. 2022;10:950927. http://doi.org/10.3389/fcell.2022.950927.
24. Hood DA, Memme JM, Oliveira AN, Triolo M. Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annual Review of Physiology. 2019;81(1):19-41. http://doi.org/10.1146/annurev-physiol-020518-114310.
25. Zhu Y, Gramolini AO, Walsh MA, Zhou YQ, Slorach C, Friedberg MK, et al. Tbx5-dependent pathway regulating diastolic function in congenital heart disease. Proceedings of the National Academy of Sciences. 2008;105(14):5519-24. http://doi.org/10.1073/pnas.0801779105.
26. Nunes RB, Heck TG, Alves JP, Dal Lago P. Hemodynamic responses during an incremental swimming exercise test in rats. Journal of Exercise Physiology Online. 2015;15(3):55-62.https://www.researchgate.net/publication/290453459.
27. Dun Y, Smith JR, Liu S, Olson TP. High-intensity interval training in cardiac rehabilitation. Clinics in Geriatric Medicine. 2019;35(4):469-87. http://doi.org/10.1016/j.cger.2019.07.011.
28. Eijsvogels TM, Molossi S, Lee DC, Emery MS, Thompson PD. Exercise at the extremes: the amount of exercise to reduce cardiovascular events. Journal of the American College of Cardiology. 2016;67(3):316-29. http://doi.org/10.1016/j.jacc.2015.11.034.
29. Mehboudi M, Asgharpour H, Hosseini SA, Rezaeeshirazi R. Effect of a six week-swimming interval training with resveratrol consumption on apoptotic markers in the liver tissue of aged rat. Elderly Health Journal. 2021;7(1):39-44. http://doi.org/10.18502/ehj.v7i1.6550. 
30. Amirazodi F, Mehrabi A, Amirazodi M, Parsania S, Rajizadeh MA, Esmaeilpour K. The combination effects of resveratrol and swimming HIIT exercise on novel object recognition and open-field tasks in aged rats. Experimental Aging Research. 2020;46(4):336-58. http://doi.org/10.1080/0361073X.2020.1754015.
31. Ghafouri-Fard S, Khanbabapour Sasi A, Hussen BM, Shoorei H, Siddiq A, Taheri M, et al. Interplay between PI3K/AKT pathway and heart disorders. Molecular Biology Reports. 2022;49(10):9767-81. http://doi.org/10.1007/s11033-022-07468-0. 
32. Lajoie C, Calderone A, Trudeau F, Lavoie N, Massicotte G, Gagnon S, Béliveau L. Exercise training attenuated the PKB and GSK-3 dephosphorylation in the myocardium of ZDF rats. Journal of Applied Physiology. 2004;96(5):1606-12. http://doi.org/10.1152/japplphysiol.00853.2003.
33. Wu L, Wang J, Cao X, Tian Y, Li J. Effect of acute high-intensity exercise on myocardium metabolic profiles in rat and human study via metabolomics approach. Scientific Reports. 2022;12(1):6791. http://doi.org/10.1038/s41598-022-10976-5.
34. Wang JG, Miyazu M, Matsushita E, Sokabe M, Naruse K. Uniaxial cyclic stretch induces focal adhesion kinase (FAK) tyrosine phosphorylation followed by mitogen-activated protein kinase (MAPK) activation. Biochemical and Biophysical Research Communications. 2001;288(2):356-61. http://doi.org/.10.1006/bbrc.2001.5775.
35. Oliveira RS, Ferreira JC, Gomes ER, Paixao NA, Rolim NP, Medeiros A, et al. Cardiac anti‐remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signalling pathway in heart failure mice. The Journal of Physiology. 2009;587(15):3899-910. http://doi.org/10.1016/j.yjmcc.2004.05.021
36. Melling CJ, Thorp DB, Noble EG. Regulation of myocardial heat shock protein 70 gene expression following exercise. Journal of Molecular and Cellular Cardiology. 2004;37(4):847-55. http://doi.org/10.1016/j.yjmcc.2004.05.021.
37. Shen YJ, Pan SS, Zhuang T, Wang FJ. Exercise preconditioning initiates late cardioprotection against isoproterenol-induced myocardial injury in rats independent of protein kinase C. The Journal of Physiological Sciences. 2011;61(1):13-21.  http://doi.org/10.1007/s12576-010-0116-9.
38. Kwak HB. Effects of aging and exercise training on apoptosis in the heart. Journal of Exercise Rehabilitation. 2013;9(2):212. http://doi.org/10.12965/jer.130002.
39. Hastings MH, Zhou Q, Wu C, Shabani P, Huang S, Yu X, et al. Cardiac ageing: from hallmarks to therapeutic opportunities. Cardiovascular Research. 2024;26:cvae124. http://doi.org/10.1093/cvr/cvae124.