تأثیر سفتی سطوح الاستیک پهن بر رفتاربیومکانیکی اندام تحتانی طی هاپینگ

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکتری بیومکانیک ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه خوارزمی، تهران، ایران.

2 استاد تمام بیومکانیک ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه خوارزمی، تهران، ایران.

3 استادیار پژوهشگاه تربیت بدنی و علوم ورزشی، تهران، ایران.

4 استادیار گروه ارتوپدی فنی دانشگاه علوم بهزیستی و توانبخشی، تهران، ایران.

چکیده

زمینه و هدف: سفتی سطح ورزشی به عنوان یکی از عوامل تأثیرگذار بر نیروهای رد و بدل شده بین ورزشکار و سطح می­تواند بر فرکانس و شدت آسیب­های ورزشی تأثیر گذار باشد. هدف این تحقیق تأثیر سفتی سطوح ورزشی بر رفتار بیومکانیکی اندام تحتانی طی هاپینگ بود. روش تحقیق: سفتی اندام تحتانی، سفتی مفاصل زانو، مچ پا و نیروی عکس‌العمل زمین 15 مرد جوان در دامنه سنی30-18 سال و دامنه وزنی 60 تا 88 کیلوگرم در تکالیف هاپینگ روی پنج سطح با سفتی 200 تا 500 کیلونیوتن بر متر با استفاده از صفحه نیرو و سیستم آنالیز حرکت مورد اندازه­گیری قرار گرفت. یافته ها: نتایج آزمون آنالیز واریانس و آزمون تعقیبی بونفرونی نشان داد در پارامتر سفتی اندام بین سطح 200 و صفحه نیرو (04/0p=)؛ بین سطح 300 و صفحه نیرو (03/0p=)؛ بین 400 و صفحه نیرو (007/0p=)، در حداکثر نیروی عکس العمل بین سطح 200 و صفحه نیرو (01/0p=)؛ بین سطح 200 و 500 (003/0p=) و در سفتی مفصل مچ پا بین سطح 300 و 400 (04/0p=) تفاوت معنی­داری مشاهده شد. نتیجه گیری: نتایج این تحقیق نشان داد بر خلاف تصور رایج که عنوان می­کند افزایش سفتی سطح موجب کاهش سفتی اندام می­شود و برعکس، تعامل بین سفتی سطح و سفتی اندام تنها به دامنه سفتی کم و نزدیک به سفتی اندام محدود می‌شود و در دامنه سفتی بیشتر این فرض منطقی به نظر نمی­رسد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of surface stiffness on the biomechanical behavior of the lower limb

نویسندگان [English]

  • Abbas FarjadPezeshk 1
  • Heydar Sadeghi 2
  • Mohammad ShariatZadeh 3
  • Zahra Safaie Pour 4
1 PhD in Sports Biomechanics, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
2 Professor of Sports Biomechanics, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran.
3 Assistance professor at the Sports Sciences Research Institute, Tehran, Iran.
4 Assistance Professor in social welfare and rehabilitation sciences, Tehran, Iran
چکیده [English]

Background and Aim: The stiffness of sports surface, as one of the effective factors on traveling forces between human and surface, could affect the frequency and severity of sports injuries. However, there is little information regarding the effect of area elastic surface stiffness on the movement mechanics and applied forces. So, the purpose of this study was to identify the effect of surface stiffness on biomechanical behavior of lower limb. Materials and Methods: In order to calculate leg stiffness, knee and ankle joint stiffness and vertical ground reaction force of 15 young male with the age range of 18-33 and weight range of 60-88 kg during hopping on the five different surfaces ranging from 200 to 500 kN/m, we used motion analysis and force platform systems. Results: results of ANOVA and Bonferroni Post-hoc test showed significant differences in the leg stiffness between 200 kN/m surface and force plate (P=0.04), between 300 kN/m and force plate (P=0.03) and between 400 kN/m and force plate (P=0.007); in the maximum ground reaction force between 200 kN/m surface and force plate (P=0.01) and between 200 and 500 kN/m surface (P=0.003) and finally in the ankle stiffness between 300 and 400 kN/m surface (P=0.04).Conclusion: The results of this study showed that unlike common opinion that increase in surface stiffness causes the decrease in leg stiffness and vice versa, the interaction between surface stiffness and leg stiffness is only limited to surfaces with lower range of stiffness that resemble the leg stiffness value. Furthermore, if the limb stiffness increases, the suggested hypothesis fails to be accepted.

کلیدواژه‌ها [English]

  • Surface stiffness
  • Limb stiffness
  • Ground reaction force
  • Joint stiffness
  • Hopping
Arampatzis, A., Bruggemann, G. P., & Klapsing, G. (2001). Leg stiffness and mechanical energetic processes during jumping on a sprung surface. Journal of Medicine and Science in Sports and Exercise, 33(6), 923–931.
Arampatzis, A., Bruggemann, G. P., & Klapsing, G. M. (2002). A three-dimensional shank – foot model to determine the foot motion during landings. Journal of Medicine and Science in Sports and Exercise, 34(1), 130–138.
Arampatzis, A., Morey-Klapsing, G., & Bruggemann, G. P. (2003). The effect of falling height on muscle activity and foot motion during landings. Journal of Electromyography and Kinesiology, 13(3), 533–544.
Arampatzis, A., Schade, F., & Bruggemann, G. P. (2004a). Effect of the pole – human body interaction on pole vaulting performance. Journal of Biomechanics, 37(9), 1353–1360.
Arampatzis, A., Stafilidis, S., Morey-Klapsing, G., & Bruggemann, G. P. (2004b). Interaction of the human body and surfaces of different stiffness during drop jumps. Journal of Medicine and Science in Sports and Exercise, 36(3), 451–459.
Baltich, J., Maurer, K., & Nigg, B. M. (2015). Increased vertical impact forces and altered running mechanics with softer midsole shoes. Journal of PLoS ONE, 10(4), 1-11.
Biewener, A. A. (1989). Scaling body support in mammals: Limb posture and muscle mechanics. Journal of Science, 245(4913), 45–48.
Biewener, A. A. (1990). Biomechanics of mammalian terrestrial locomotion. Science, 250, 1097–1103.
Bohm, H., Cole, G. K., Bruggemann, G. P., & Ruder, H. (2006). Contribution of muscle series elasticity to maximum performance in drop jumping. Journal of Applied Biomechanics, 22(1), 3–13.
Butler, R. J., Crowell, H. P., & Davis, I. M. (2003). Lower extremity stiffness: Implications for performance and injury. Journal of Clinical Biomechanics, 18(6), 511–517.
Creby, M., & Dixson, S. (2008). External frontal plane loads may be associated with tibial stress fracture. Journal of Medicine in Science and Sport Exercise, 40(9), 1669–1674.
Clarke, T., Frederick, E., & Cooper, L. (1983) Effects of shoe cushioning upon ground reaction forces in running. Journal of International Sports Medicine, 4, 247–251.
Ferris, D. P., & Farley, C. T. (1997). Interaction of leg stiffness and surfaces stiffness during human hopping. Journal of Applied Physiology, 82(1), 15–22.
Farley, C. T., Houdijk, H. H., Van Strien, C., & Louie, M. (1998). Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. Journal of Applied Physiology, 85(3), 1044–1055.
Grimston, S., Engsberg, R., Kloiber, R., & Hanley, D. (1991). Bone mass, external loads, and stress fracture in female runners. Journal of Human Performance, 7, 293–302.
Hamill, J., Russell, E., Gruber, A., & Miller, R. (2011). Impact characteristics in shod and barefoot running. Journal of Footwear Science, 3, 33–40.
Hardin, E. C., van den Bogert, A. J., & Hamill, J. (2004). Kinematic adaptations during running: Effects of footwear, surface, and duration. Journal of Medicine and Science in Sports and Exercise, 36(5), 838–844.
Hobara, H., Inoue, K., Muraoka, T., Omuro, K., Sakamoto, M., & Kanosue, K. (2010). Leg stiffness adjustment for a range of hopping frequencies in humans. Journal of Biomechanics, 43(3), 506–511.
Hunter, J. P., Marshall, R. N., & McNair, P. J. (2004). Segment-interaction analysis of the stance limb in sprint running. Journal of Biomechanics, 37(9), 1439 –1446.
McMahon, T. A., & Greene, P. R. (1979). The infuence of track compliance on running. Journal of Biomechanics, 12(12), 893 – 904.
Milner, C., Ferber, R., Pollard, C., Hamill, J., & Davis, I. (2006). Biomechanical factors associated with tibial stress fracture in female runners. Journal of Medicine in Science and Sport Exercise, 38(2), 323–328.
Moritz, C. T., & Farley, C. T. (2005). Human hopping on very soft elastic surfaces: Implications for muscle pre-stretch and elastic energy storage in locomotion. Journal of Experimental Biology, 208(5), 939 – 949.
Nigg, B. M. (1990). The validity and relevance of tests used for the assessment of sports surfaces. Journal of Medicine and Science in Sports and Exercise, 22, 131-139.
Nigg, B. M., Bahlsen, H., Luethi, S., & Stokes, S. (1987). The influence of running velocity and midsole hardness on external impact forces in heel-toe-running. Journal of Biomechanics, 20(10), 951–959.
Winter, D. A. (2009). Biomechanics and motor control of human movement. John Wiley & Sons.