تاثیر شدت های مختلف تمرین مقاومتی و هوازی بر سطوح ریلکسین سرم موش های اوارکتومی شده

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران.

2 استاد گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی ، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران.

3 دانشیار گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه آزاد اسلامی واحد تهران مرکزی، تهران، ایران.

4 استادیار گروه فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی زاهدان، زاهدان، ایران.

چکیده

زمینه و هدف: کاهش ریلکسین در دوران یائسگی یکی از عواملی است که سبب تغییرات فیزیولوژیک در زنان می شود، با توجه به کمبود اطلاعات در خصوص تاثیر فعالیت ورزشی بر غلظت ریلکسین، هدف مطالعه حاضر بررسی اثر شدت های مختلف تمرین مقاومتی و هوازی بر سطوح غلظت ریلکسین سرم موش های اوارکتومی شده بود. روش تحقیق: در این مطالعه تجربی، 60 سر موش صحرایی ماده با میانگین وزنی (10±230 گرم) به صورت تصادفی در 6 گروه 10 تایی شامل: اوارکتومی، اوارکتومی+تمرین مقاومتی شدید، اوارکتومی+تمرین مقاومتی با شدت کم، اوارکتومی+تمرین شنا تناوبی شدید، اوارکتومی+تمرین شنا تداومی و گروه شم قرار گرفتند. نخست حیوانات اوارکتومی شدند و یک هفته پس از آن موش های گروه تمرین با تکرار 3 جلسه در هفته به مدت 8 هفته تمرینات ورزشی را انجام دادند. پس از آن سطوح غلظت ریلکسین سرم به روش (ELISA) اندازه گیری شد. تجزیه و تحلیل داده ها با استفاده از آزمون تحلیل واریانس یک راهه در سطح معنی داری (05/0>p) انجام گردید. یافته ها: غلظت ریلکسین سرمی پس از 8 هفته تمرین، در گروه شم (0001/0p=)، گروه تمرین مقاومتی با شدت زیاد (0001/0p=) و گروه تمرین شنا تناوبی با شدت زیاد (002/0p=) در مقایسه با گروه کنترل افزایش معنی دار نشان داد و عدم معنی داری در گروه تمرین شنا تداومی (10/0p=) و گروه تمرین مقاومتی  با شدت کم (43/0p=) مشاهده گردید. نتیجه گیری: ریلکسین آثار مثبتی بر بافت های مختلف بدن دارد، این هورمون در دوران یائسگی کاهش می یابد ولی با انجام فعالیت های ورزشی پر شدت غلظت این هورمون افزایش خواهد داشت.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of different intensity of resistsnce and aerobic exercises on serum relaxin levels in ovariectomized rats

نویسندگان [English]

  • Ahmad Mir 1
  • Mohammad Ali Azarbayjani 2
  • Hasan Matin Homaei 3
  • Hamed Fanaei 4
1 Ph.D Student of Exercise Physiology, Faculty of Physical Education & Sport Sciences, Islamic Azad University - Tehran Central Branch, Tehran, Iran.
2 Full Professor, Department of Exercise Physiology, Faculty of Physical Education & Sport Sciences, Islamic Azad University - Tehran Central Branch, Tehran, Iran.
3 Associate Professor, Departmernt of Exercise Physiology, Faculty of Physical Education & Sport Sciences, Islamic Azad University - Tehran Central Branch, Tehran, Iran.
4 Assistant Professor, Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
چکیده [English]

Background and Aim: the reduction of Relaxin in menopause is one of the factors that cause physiological changes in women. Due to the lack of information about the effect of exercise training on the concentration of Relaxin, the aim of this research was to study the effect of different intensities of resistance and aerobic training on serum relaxin levels in ovariectomized rat. Materials and Methods: In this experimental study, 60 female rats average  weight (230 ± 10 grams) were randomly assigned in to 6 groups of 10, including: ovariectomy, ovariectomy +high intensity resistance training, ovariectomy + low intensity resistance training, ovariectomy + intense intermittent swimming training, Ovariectomy + Continuous swimming training and Sham group. First, the animals became ovariectomized and after a week, the rats in the exercise group performed selected training 3 sessions per week for 8 weeks. Afterwards, the levels of serum relaxin were measured by ELISA method. Data analysis was performed using ANOVA test and the significant level was set at (p<0.05). Results: Serum relaxin concentration showed significant increase after 8 weeks of training as compared to the other groups as: control group, sham group (p=0.0001), intensive resistance training group (p=0.0001) and intensive exercise group (p=0.002) , however,  no significant changes were observed in the continuous swimming training group (p=0.10) and low intensity resistance training group (p=0.43). Conclusion: Relaxin showed positive effects on various tissues of the body, this hormone decreases during menopause, but with high intensity exercise, the concentration of this hormone will increase.

کلیدواژه‌ها [English]

  • Resistance exercises
  • Aerobic exercises
  • Relaxin
  • Ovariectomy
Bachmann, G. A. (2005). Menopausal vasomotor symptoms: a review of causes, effects and evidence-based treatment options. The Journal of Reproductive Medicine, 50(3), 155-165.
Bani, D. (1997). Relaxin: a pleiotropic hormone. General Pharmacology: The Vascular System, 28(1), 13-22.
Bani, D., Baccari, M. C., Nistri, S., Calamai, F., Bigazzi, M., & Sacchi, T. B. (1999). Relaxin up-regulates the nitric oxide biosynthetic pathway in the mouse uterus: involvement in the inhibition of myometrial contractility. Endocrinology, 140(10), 4434-4441.
Bani, D., Masini, E., Bello, M. G., Bigazzi, M., & Sacchi, T. B. (1998). Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart. The American Journal of Pathology, 152(5), 1367.
Bathgate, R. A., Hsueh, A. J., & Sherwood, O. D. (2006). Physiology and molecular biology of the relaxin peptide family. 3th Edition. In Knobil and Neill's physiology of reproduction (pp. 679-768). Academic Press.
Bathgate, R. A. D., Halls, M. L., van der Westhuizen, E. T., Callander, G. E., Kocan, M., & Summers, R. J. (2013). Relaxin family peptides and their receptors. Physiological Reviews, 93(1), 405-480.
Bjersing, J. L., Larsson, A., Palstam, A., Ernberg, M., Bileviciute-Ljungar, I., Löfgren, M., ... & Mannerkorpi, K. (2017). Benefits of resistance exercise in lean women with fibromyalgia: involvement of IGF-1 and leptin. BMC Musculoskeletal Disorders, 18(1), 106.
Conrad, K. P., & Baker, V. L. (2012). Corpus luteal contribution to maternal pregnancy physiology and outcomes in assisted reproductive technologies. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304(2), R69-R72.
Dehghan, F., Haerian, B. S., Muniandy, S., Yusof, A., Dragoo, J. L., & Salleh, N. (2014). The effect of relaxin on the musculoskeletal system. Scandinavian Journal of Medicine & Science in Sports, 24(4), e220-e229.
Dennerstein, L., Lehert, P., Guthrie, J. R., & Burger H.G. (2007). Modeling women's health during the menopausal transition: a longitudinal analysis. Menopause, 14(1), 53- 62.
Dennerstein, L (1996). symptoms and the menopausal transition. National Center for Biotechnology Information, 23(2), 147-57.
Edy, A., Juniza, f., Budi Iman, S. M., & Rhiza, Z. (2015). Comparison of relaxin levels between premenopausal women and menopausal women with and without pelvic organ prolapse. Journal of Biology, Agriculture and Healthcare, 5(8), 177-181.
Grissom, E. M., & Daniel, J. M. (2016). Evidence for ligand-independent activation of hippocampal estrogen receptor-α by IGF-1 in hippocampus of ovariectomized rats. Endocrinology, 157(8), 3149-3156.
Elloumi, M., El Elj, N., Zaouali, M., Maso, F., Filaire, E., Tabka, Z., & Lac, G. (2005). IGFBP-3, a sensitive marker of physical training and overtraining. British Journal of Sports Medicine, 39(9), 604-610.
Ferlin, A., Perilli, L., Gianesello, L., Taglialavoro, G., & Foresta, C. (2011). Profiling insulin like factor 3 (INSL3) signaling in human osteoblasts. PLOS One, 6(12), e29733.
Figueiredo, K. A., Mui, A. L., Nelson, C. C., & Cox, M. E. (2006). Relaxin stimulates leukocyte adhesion and migration through a relaxin receptor LGR7-dependent mechanism. Journal of Biological Chemistry, 281(6), 3030-3039.
Fisher, C., MacLean, M., Morecroft, I., Seed, A., Johnston, F., Hillier, C., & McMurray, J. (2002). Is the pregnancy hormone relaxin also a vasodilator peptide secreted by the heart?. Circulation, 106(3), 292-295.
Garibay-Tupas, J. L., Okazaki, K. J., Tashima, L. S., Yamamoto, S., & Bryant-Greenwood, G. D. (2004). Regulation of the human relaxin genes H1 and H2 by steroid hormones. Molecular and Cellular Endocrinology, 219(1-2), 115-125.
Hall, J. M., Couse, J. F., & Korach, K. S. (2001). The multifaceted mechanisms of estradiol and estrogen receptor signaling. Journal of Biological Chemistry, 276(40), 36869-36872.
Heringlake, M., Kox, T., Poeling, J., Klaus, S., Hanke, T., Franz, N., ... & Bahlmann, L. (2009). The effects of physical exercise on plasma levels of relaxin, NTproANP, and NTproBNP in patients with ischemic heart disease. European Journal of Medical Research, 14(3), 106.
Ho, T. Y., Santora, K., Chen, J. C., Frankshun, A. L., & Bagnell, C. A. (2011). Effects of relaxin and estrogens on bone remodeling markers, receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG), in rat adjuvant-induced arthritis. Bone, 48(6), 1346-1353.
Hsu, S. Y., Nakabayashi, K., Nishi, S., Kumagai, J., Kudo, M., Sherwood, O. D., & Hsueh, A. J. (2002). Activation of orphan receptors by the hormone relaxin. Science, 295(5555), 671-674.
Kanaley, J. A., Frystyk, J., Møller, N., Dall, R., Chen, J. W., Nielsen, S. C., ... & Flyvbjerg, A. (2005). The effect of submaximal exercise on immuno-and bioassayable IGF-I activity in patients with GH-deficiency and healthy subjects. Growth Hormone & IGF Research, 15(4), 283-290.
Kraemer, R. R., Durand, R. J., Acevedo, E. O., Johnson, L. G., Kraemer, G. R., Hebert, E. P., & Castracane, V. D. (2004). Rigorous running increases growth hormone and insulin-like growth factor-I without altering ghrelin. Experimental Biology and Medicine, 229(3), 240-246.
Krüger, S., Graf, J., Merx, M. W., Stickel, T., Kunz, D., Hanrath, P., & Janssens, U. (2004). Relaxin kinetics during dynamic exercise in patients with chronic heart failure. European Journal of Internal Medicine, 15(1), 54-56.
LeRoith, D. (2008). Clinical relevance of systemic and local IGF-I: lessons from animal models. Pediatric Endocrinology Reviews: PER, 5, 739-743.
Li, H., Li, S. L., Wu, Z. H., Gong, L., Wang, J. L., & Li, Y. Z. (2009). Effect of traditional Chinese herbal Bu‐Wang‐San on synaptic plasticity in ovariectomised rats. Journal of Pharmacy and Pharmacology, 61(1), 95-101.
Meera, P., Anwer, K., Monga, M., Oberti, C., Stefani, E., Toro, L., & Sanborn, B. M. (1995). Relaxin stimulates myometrial calcium-activated potassium channel activity via protein kinase A. American Journal of Physiology-Cell Physiology, 269(2), C312-C317.
Molanouri Shamsi, M., Mohammad Hassan, Z. H., Mahdavi, M., Gharakhanlou, R., Baghersad, L., Azadmanesh, K., & Edalat, R. (2011). Influence of resistance training on IL-15 mRNA expression and the protein content in slow and fast twitch muscles of diabetic rats. Iranian Journal of Endocrinology and Metabolism, 14(2), 185-192. [Persian]
Norozi, A., Kasiri, N., & Aslami, A. (2010). Attitudes and perceptions of women 45 years of menopause. Journal of Health Systems Research, 7, 14.
Osheroff, P. L., & Ho, W. H. (1993). Expression of relaxin mRNA and relaxin receptors in postnatal and adult rat brains and hearts. Localization and developmental patterns. Journal of Biological Chemistry, 268(20), 15193-15199.
Rocha, G. L. D., Crisp, A. H., De Oliveira, M. R., Silva, C. A. D., Silva, J. O., Duarte, A. C., ... & Verlengia, R. (2016). Effect of high intensity interval and continuous swimming training on body mass adiposity level and serum parameters in high-fat diet fed rats. The Scientific World Journal, 2016, 1-8.
Safarzade, A., Gharakhanlou, R., Hedayati, M., & Talebi-Garakani, E. (2012). Effects of 3 resistance training programs on serum vaspin, hs-CRP and TNF-α concentrations in the streptozotocin-induced diabetic rats. Journal of Applied Exercise Physiology, 8(16), 87-100. [Persian]
Santora, K., Rasa, C., Visco, D., Steinetz, B., & Bagnell, C. (2005). Effects of relaxin in a model of rat adjuvant‐induced arthritis. Annals of the New York Academy of Sciences, 1041(1), 481-485.
Sherwood, O. D., Fields, Ph. A., & Steinetz, B. G. (2005). Relaxin and related peptides. New York: Wiley. 1041.
Skøtt, O., & Carter, A. M. (2002). Relaxin is a vasodilator hormone. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 283(2), R347-R348.
Soloff, M. S., Gal, S., Hoare, S., Peters, C. A., Hunzicker-Dunn, M., Anderson, G. D., & Wood, T. G. (2003). Cloning, characterization, and expression of the rat relaxin gene. Gene, 323, 149-155.
Steinetz, B. G., Goldsmith, L. T., Harvey, H. J., & Lust, G. (1989). Serum relaxin and progesterone concentrations in pregnant, pseudopregnant, and ovariectomized, progestin-treated pregnant bitches: detection of relaxin as a marker of pregnancy. American Journal of Veterinary Research, 50(1), 68-71.
Tanira, S., Wazed, F., Sultana, A., Amin, R., Sultana, K., & Ahmad, S. (2009). Knowledge, attitude and experience of menopause an urban based study in Bangladesh. Journal of Dhaka Medical College, 18(1), 33-36.