Document Type : Original Article

Authors

1 Assistant Professor of Department of Sport Sciences, Ardakan University, Ardakan, Iran.

2 Member of Department of Physical Education and Sport Sciences, Technical and Vocational University (TVU), Tehran, Iran.

3 Undergraduate Student of Sport Sciences, Department of Sport Sciences, Ardakan University, Ardakan, Iran.

Abstract

Background and Aim: The use of medicinal plants along with exercise especially in obese people has received much attention due to the modulation of inflammatory and oxidative responses. Therefore, the aim of this study was to investigate the effect of eight weeks of high intensity interval training (HIIT) and green tea supplement on serum levels of acetylcholinesterase (AChE), amyloid beta-42 (Aβ42) and malondialdehyde (MDA) in untrained obese elderly men. Materials and Methods: Forty eight obese elderly men (age 65.42±3.16 years and body mass index 30.93±1.15 kg/m2) were randomly divided into four groups of 12 people including HIIT, supplement green tea, HIIT+ green tea supplement and control- placebo. HIIT training was carried out for eight weeks and three sessions per week. Green tea supplement in the form of six capsules per day in the amount of 450 mg was received by the target groups. Testing was done 48 hours before and after the last training session. The AChE and AB42 were measured by ELISA and MDA by TBARS method. Results were extracted using by analysis of variance with repeated measurement, analysis of variance two -way and Tukey’s post hoc tests at a significance level of p<0.05. Results: The most significant changes (decrease) in body mass index (p=0.01, 3.50%) and percent body fat (p=0.0001, 11.07%); and a significant increase in maximum oxygen consumption (p=0.02, 9.22%) was observed in the HIIT+ green tea group. The combined effect of HIIT and green tea supplementation showed a significant decrease in AChE (p=0.0001, 19.91%), Aβ42 (p=0.0001, 27.99%), and MDA (p=0.01, 26.09%). Moreover, the HIIT caused significant decrease  in AChE (p=0.02, 15.67%), Aβ42 (p=0.01, 16.22%) and MDA (p=0.01, 14.14%); and green tea supplement caused a significant decrease in Aβ42 (p=0.023, 6.19%). Conclusion: The combined intervention of HIIT with green tea supplement compared to the effect of each one alone, causes a further improvement of inflammatory and oxidative indices in obese elderly men.

Keywords

Alikhani, S., & Sheikholeslami‐Vatani, D. (2019). Oxidative stress and anti‐oxidant responses to regular resistance training in young and older adult women. Geriatrics & Gerontology International, 19(5), 419-422. http://dx.doi.org/10.1111/ggi.13636 
Arabzadeh, E., Norouzi Kamareh, M., Ramirez‐Campillo, R., Mirnejad, R., Masti, Y., & Shirvani, H. (2022). Twelve weeks of treadmill exercise training with green tea extract reduces myocardial oxidative stress and alleviates cardiomyocyte apoptosis in aging rat: The emerging role of BNIP3 and HIF‐1α/IGFBP3 pathway. Journal of Food Biochemistry, 46(12), e14397. http://dx.doi.org/10.1111/jfbc.14397 
Azali-Alamdari, K., & Saberi, Y. (2019). The effects of aerobic training on blood ache and bche activities and cardiometabolic risk factors level in midlife women. Journal of Applied Exercise Physiology, 15(29). [In Persian]. 105-118. http://doi.org/10.22080/JAEP.2019.14774.1798 
Azizbeigi, K., Stannard, S. R., & Atashak, S. (2019). Green tea supplementation during resistance training minimally affects systemic inflammation and oxidative stress indices in obese men. Jundishapur Journal of Natural Pharmaceutical Products, 14(1). e61419. [In Persian]. http://dx.doi.org/10.5812/jjnpp.61419 
Chen, J., & Song, H. (2016). Protective potential of epigallocatechin-3-gallate against benign prostatic hyperplasia in metabolic syndrome rats. Environmental Toxicology and Pharmacology, 45, 315-320. http://dx.doi.org/10.1016/j.etap.2016.06.015 
Chen, J., Ma, W., Yu, J., Wang, X., Qian, H., Li, P., ... & Huang, Y. (2023). Epigallocatechin-3-gallate, a polyphenol from green tea, regulates the liquid–liquid phase separation of alzheimer’s-related protein tau. Journal of Agricultural and Food Chemistry, 71(4), 1982-1993. http://dx.doi.org/10.1021/acs.jafc.2c07799 
Cruz-Ávila, J., Hernández-Pérez, E., González-González, R., Bologna-Molina, R., & Molina-Frechero, N. (2022). Periodontal disease in obese patients; interleukin-6 and c-reactive protein study: A Systematic Review. Dentistry Journal, 10(12), 225. http://dx.doi.org/10.3390/dj10120225 
Daniela, M., Catalina, L., Ilie, O., Paula, M., Daniel-Andrei, I., & Ioana, B. (2022). Effects of exercise training on the autonomic nervous system with a focus on anti-inflammatory and antioxidants effects. Antioxidants, 11(2), 350. http://dx.doi.org/10.3390/antiox11020350 
Ellman, G.L., Courtney, K.D., Andres Jr, V., & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88-95. http://dx.doi.org/10.1016/0006-2952(61)90145-9 
Ezeja, E.P., Onuoha, N.O., & Ufere, E.A. (2021). Effects of green tea (Camellia sinensis) on paracetamol-induced oxidative stress markers in Wistar rats. Journal of Dietitians Association of Nigeria, 12, 30-37. http://dx.doi.org/10.4314/jdan.v12i1.5 
Gharebashloei, A., Yaghoubi, A., & Shojaeian, N. (2022). The effect of 12 weeks step-aerobics training on amyloidβ-42 (Aβ42) and mental status of elderly women. Journal of Practical Studies of Biosciences in Sport, 10(24), 22-31. [In Persian]. https://doi.org/10.22077/jpsbs.2021.4562.1658
Ghasemnian, A., Sojasi Gheydari, F., Karimiasl, A., & Norouzi, H. (2020). Effects of strenuous endurance and high-intensity interval training on thioredoxin reductase-1 enzyme and malondialdehyde in hippocampal tissue. Journal of  Health Research in Community, 6(2), 80-86. [In Persian]. http://jhc.mazums.ac.ir/article-1-480-fa.html 
Hughes, C.G., Boncyk, C.S., Fedeles, B., Pandharipande, P. P., Chen, W., Patel, M.B., ... & Girard, T.D. (2022). Association between cholinesterase activity and critical illness brain dysfunction. Critical Care, 26(1), 1-12. http://dx.doi.org/10.1186/s13054-022-04260-1 
Ikar, M., & Sable, S. (2023). Tea, coffee and green tea consumption and mental health outcomes: A systematic review and meta-analysis of observational and intervention studies on stress and related conditions. Journal of Pharmacognosy and Phytochemistry, 12(2), 209-221. http://dx.doi.org/10.22271/phyto.2023.v12.i2c.14660 
Jack Jr, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., … & Sperling, R. (2018). NIA‐AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535-562.  http://dx.doi.org/10.1016/j.jalz.2018.02.018 
Jiang, X., Xu, J., Zhen, S., & Zhu, Y. (2023). Obesity is associated with postoperative outcomes in patients undergoing cardiac surgery: a cohort study. BMC Anesthesiology, 23(1), 1-7. http://dx.doi.org/10.1186/s12871-022-01966-1 
Khosravi, S., Tadibi, V., & SheikholeslamiVatani, D. (2019). The acute effect of green tea supplementation on oxidative and antioxidant indices after resistance exercise at moderate and high intensities in trained wrestler men. Journal of Practical Studies of Biosciences in Sport, 7(14), 141-152. [In Persian]. https://doi.org/10.22077/jpsbs.2017.773.1263 
Kim, H.K., Kim, M., Kim, S., Kim, M., & Chung, J.H. (2004). Effects of green tea polyphenol on cognitive and acetylcholinesterase activities. Bioscience, Biotechnology, and Biochemistry, 68(9), 1977-1979. http://dx.doi.org/10.1271/bbb.68.1977 
Kim, J.M., Park, S.K., Kang, J.Y., Park, S.B., Yoo, S.K., Han, H.J., ... & Heo, H.J. (2019). Green tea seed oil suppressed Aβ1–42-induced behavioral and cognitive deficit via the Aβ-related Akt pathway. International Journal of Molecular Sciences, 20(8), 1865. http://dx.doi.org/10.3390/ijms20081865 
Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). Physical activity and risk of cognitive
impairment and dementia in elderly persons. Archives of Neurology, 58(3), 498-504. http://dx.doi.org/10.1001/archneur.58.3.498 
Leisegang, K., Henkel, R., & Agarwal, A. (2019). Obesity and metabolic syndrome associated with systemic inflammation and the impact on the male reproductive system. American Journal of Reproductive Immunology, 82(5), e13178. http://dx.doi.org/10.1111/aji.13178 
Li, X., Han, T., Zou, X., Zhang, H., Feng, W., Wang, H., ... & Fang, G. (2021). Long-term high-intensity interval training increases serum neurotrophic factors in elderly overweight and obese Chinese adults. European Journal of Applied Physiology, 121, 2773-2785. http://dx.doi.org/10.1007/s00421-021-04746-w 
Llado-Saz, S., Atienza, M., &, Cantero, J.L. (2015). Increased levels of plasma amyloid-beta are related to cortical thinning and cognitive decline in cognitively normal elderly subjects. Neurobiology of Aging, 36(10), 2791-2797. http://dx.doi.org/10.1016/j.neurobiolaging.2015.06.023 
Martins, M.M., Branco, P.S., & Ferreira, L.M. (2023). Enhancing the therapeutic effect in alzheimer’s disease drugs: the role of polypharmacology and cholinesterase inhibitors. Chemistry Select, 8(10), e202300461. http://dx.doi.org/10.1002/slct.202300461 
Mindukshev, I.V., Skverchinskaya, E.A., Khmelevskoy, D.A., Dobrylko, I. A., & Goncharov, N. V. (2019). Acetylcholinesterase inhibitor paraoxon intensifies oxidative stress induced in rat erythrocytes in vitro. biochemistry (moscow), supplement series a: Membrane and Cell Biology, 13, 85-91.  http://dx.doi.org/10.1134/s1990747819010070 
Mokra, D., Joskova, M., & Mokry, J. (2023). Therapeutic effects of green tea polyphenol (‒)epigallocatechin-3-gallate (egcg) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. International Journal of Molecular Sciences, 24(1), 340. http://dx.doi.org/10.3390/ijms24010340 
Naderifar, H., Mohammad khani Gangeh, M., Mehri, F., & Shamloo Kazemi, S. (2022). Effects of high intensity interval training and consumption of matcha green tea on malondialdehyde and glutathione peroxidase levels in women. Journal of Mazandaran University of Medical Sciences, 32(212), 42-53. [In Persian]. http://jmums.mazums.ac.ir/article-1-18008-en.html 
Nobari, H., Saedmocheshi, S., Chung, L. H., Suzuki, K., Maynar-Mariño, M., & Pérez-Gómez, J. (2021). An overview on how exercise with green tea consumption can prevent the production of reactive oxygen species and improve sports performance. International Journal of Environmental Research and Public Health, 19(1), 218. http://dx.doi.org/10.3390/ijerph19010218 
Parachikova, A., Nichol, K., & Cotman, C. (2008). Short-term exercise in aged Tg2576 mice alters neuroinflammation and
improves cognition. Neurobiology of Disease, 30(1), 121-129. http://dx.doi.org/10.1016/j.nbd.2007.12.008 
Parastesh, M., Abbasi, Y., Bayatiani, M. R., & Nadi, Z. (2023). Protective effect of moderate-intensity continuous training and high-intensity interval training on serum levels of oxidative stress parameters in rats treated with cisplatin. Journal of Mazandaran University of Medical Sciences, 32(217), 32-45. [In Persian].  http://dx.doi.org/10.34172/jsums.2021.30 
Posnakidis, G., Aphamis, G., Giannaki, C.D., Mougios, V., Aristotelous, P., Samoutis, G., & Bogdanis, G.C. (2022). High-intensity functional training improves cardiorespiratory fitness and neuromuscular performance without inflammation or muscle damage. Journal of Strength and Conditioning Research. 36(3),615-23. http://dx.doi.org/10.1519/jsc.0000000000003516 
Puoyan-Majd, S., Parnow, A., Rashno, M., Heidarimoghadam, R., & Komaki, A. (2023). The protective effects of high-intensity interval training combined with q10 supplementation on learning and memory impairments in male rats with amyloid-β-induced alzheimer’s disease. Journal of Alzheimer’s Disease, (Preprint), 1-14. http://dx.doi.org/10.3233/jad-230096 
Seabra, H.F., Campello, A.C., Chagas, E. F.G., Martins, L.P.A., Suzuki, R.B., Ruiz, M.O., ... & Baleotti, W. (2023). The role of cholinesterases in chagas disease. Parasitology  International, 92, 102659.  http://dx.doi.org/10.1016/j.parint.2022.102659 
Secker, C., Motzny, A.Y., Kostova, S., Buntru, A., Helmecke, L., Reus, L., ... & Wanker, E. E. (2023). The polyphenol EGCG directly targets intracellular amyloid‐β aggregates and promotes their lysosomal degradation. Journal of Neurochemistry, 166(2), 294-317.  http://dx.doi.org/10.1111/jnc.15842 
Shenhar-Tsarfaty, S., Sherf-Dagan, S., Berman, G., Webb, M., Raziel, A., Keidar, A., ... & Zelber-Sagi, S. (2019). Obesity-related acetylcholinesterase elevation is reversed following laparoscopic sleeve gastrectomy. International Journal of Obesity, 43(2), 297-305. http://dx.doi.org/10.1038/s41366-018-0014-4 
Vafaei., T. & Gholami, M. (2021). Effects of 8 weeks resistance training with two different intensities on plasma levels of resistin and insulin resistance in obese elderly women. Journal of Practical Studies of Biosciences in Sport, 9(19), 102-112. [In Persian]. https://doi.org/10.22077/jpsbs.2020.2796.1512 
Wang, M., Zhang, H., Liang, J., Huang, J., & Chen, N. (2023). Exercise suppresses neuroinflammation for alleviating Alzheimer’s disease. Journal of Neuroinflammation, 20(1), 76. http://dx.doi.org/10.1186/s12974-023-02753-6 
Wasowicz, W., Neve, J., & Peretz, A. (1993). Optimized steps in fluorometric determination of thiobarbituric acid-reactive substances in serum: Importance of extraction PH and influence of sample preservation and storage. Clinical Chemistry. 39(12), 2522-6.  http://dx.doi.org/10.1093/clinchem/39.12.2522 
Wewege, M., Van Den Berg, R., Ward, R.E., & Keech, A. (2017). The effects of high‐intensity interval training vs. moderate‐intensity continuous training on body composition in overweight and obese adults: a systematic review and meta‐analysis. Obesity Reviews, 18(6), 635-646. http://dx.doi.org/10.1111/obr.12532
Yang, H.I., Cho, W., Lee, D.H., Suh, S.H., & Jeon, J.Y. (2021). Development of a new submaximal walk test to predict maximal oxygen consumption in healthy adults. Sensors (Basel, Switzerland), 21(17), 5726. http://dx.doi.org/10.3390/s21175726 
Yu, F., Xu, B., Song, C., Ji, L., & Zhang, X. (2013). Treadmill exercise slows cognitive deficits in aging rats by antioxidation
and inhibition of amyloid production. Neuroreport, 24(6), 342-347. http://dx.doi.org/10.1097/wnr.0b013e3283606c5e