Document Type : Original Article

Authors

1 Msc of Exercise Physiology, Department of Physical Education, Faculty of Human Science, Semnan University, Semnan, Iran.

2 Assistant Professor of Exercise Physiology, Department of Physical Education, Faculty of Human Science, Semnan University, Semnan, Iran.

Abstract

Background and Aim: Obesity and physical inactivity lead to cardiovascular disease. The purpose of this study was to investigate the effect of four weeks' endurance training and aerobic movements on ANP and Endothelin-1 in obese women. Materials and Methods: Subject was included 19 obese women (mean age: 27.94± 3.3 year), (mean weight 85.4±5.12 kg), (mean height: 163.00± 4.91 cm), (mean BMI: 32.28±2.82 kg/m2) that were randomly allocated to experimental (n=9) and control groups (n=10). The experimental group completed a program training, which included 10 to 15 minutes of warm-up, 15 minutes of activity with ergometer and 45 minutes of aerobic movements, with an intensity of 60 to 72% of the HRmax, three sessions per week, for four weeks. Samples blood were taken after 12 hour fasting, before of start and 48 hours after end program training. ELIZA reader methods used for analysis of bio parameter and MANCOVA and ANCOVA used for date analysis in significant of PResults: Results showed significant differences between groups in endothelin-1 (P=0.007) but ANP changes were not statistically significant (P=0.14). Conclusion: Based on research findings, four weeks of aerobic training results in reduced the function of activating system of endothelin-1 in obese women and may play a role in improving the vascular endothelial system and body metabolism in obese women.

Keywords

Ahmadizad, S., Zahediasl, S., Sajadi, S. M., Ebramin, K., & Bassami, M. (2012). Effects of twelve weeks of resistance training on the resting levels of cardiac and related hormones in healthy men. Physiology and Pharmacology, 15(4), 517-526.
Beghetti, M., Black, S. M., & Fineman, J. R. (2005). Endothelin-1 in congenital heart disease.
Pediatric Research, 57(5), 16-20.
Berdy, A. E., Brar, V., Panza, J. A., & Campia, U. (2015). Vascular Endothelin-1 Activity Increases with Age in Hypertensive Patients.
Arteriosclerosis, Thrombosis, and Vascular Biology, 35(1), A139-A139.
Bian, C., Ding, D., Jin, H., Liu, L., Hong, L., Cui, B., & Cui, X. (201
6). Endogenous Endothelin-1 Regulates Hypoxia-Induced Atrial Natriuretic Peptide Secretion by Activating the MAPK/ERK and PI3K/Akt Signaling Pathways in Isolated Beating Rabbit Atria. Journal of Biosciences & Medicines, 4(1), 45-53.
Coué, M., & Moro, C. (2016). Natriuretic peptide control of energy balance and glucose homeostasis.
Biochimie, 124, 84-91.
De Almeida, J. C., Alves, C. L., de Abreu, L. C., Sato, M. A., Fonseca, F. L., de Mello Monteiro, C. B., ... & Rodrigues, L. M. (2012). Involvement of the atrial natriuretic peptide in cardiovascular pathophysiology and its relationship with exercise.
International Archives of Medicine, 5(1), 4.
Dietz, J. R. (2005). Mechanisms of atrial natriuretic peptide secretion from the atrium.
Cardiovascular Research, 68(1), 8-17.
Donato, A. J., Lesniewski, L. A., & Delp, M. D. (2005). The effects of aging and exercise training on endothelin-1 vasoconstrictor responses in rat skeletal muscle arterioles.
Cardiovascular Research, 66(2), 393-401.
Dow, C. A., Stauffer, B. L., Brunjes, D. L., Greiner, J. J., & DeSouza, C. A. (2017). Regular aerobic exercise reduces endothelin
1mediated vasoconstrictor tone in overweight and obese adults. Experimental physiology, 102(9), 1133-1142.
Engelmann, M. D., Niemann, L., Kanstrup, I.
L., Skagen, K., & Godtfredsen, J. (2005). Natriuretic peptide response to dynamic exercise in patients with atrial fibrillation. International Journal of Cardiology, 105(1), 31-39.
Figueiredo, L., Nunes, R. B., Marmett, B., de Sá, L. B., & Arbex, A. K. (2017). Anti-Inflammatory Effects of Physical Exercise on Obesity.
Open Journal of Endocrine and Metabolic Diseases, 7(1), 44.
Freund, B. J., Claybaugh, J. R., Dice, M. S., & Hashiro, G. M. (1987). Hormonal and vascular fluid responses to maximal exercise in trained and untrained males.
Journal of Applied Physiology, 63(2), 669-675.
Freund, B. J., Wade, C. E., & Claybaugh, J. R. (1988). Effects of exercise on atrial natriuretic factor.
Sports Medicine, 6(6), 364-377.
Ghahremani Moghaddam, M., & Hejazi, K. (2016). Effect of aerobic training on Endothelin-1 and Malondialdehyde in inactive elderly women.
Journal of Gorgan University of Medical Sciences, 18(3), 52-57.[Persian]
Hakimi, M., Ali-Mohammadi, M., Baghaiee, B., Siahkouhian, M., & Bolboli, L. (2016). Comparing the effects of 12 weeks of resistance and endurance training on ANP, Endothelin-1, Apeline and blood pressure in hypertensive middle-age men.
Urumia Medical Journal, 26(12), 1080-1089. [Persian]
Jamieson, J., & Palade, G. (1964). Specific granules in atrial muscle cells.
The Journal of Cell Biology, 23(1), 151-172.
Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2014). MVN: an R package for assessing multivariate normality.
The Research Journal, 6(2), 151-162.
Lafontan, M., Moro, C., Sengenes, C., Galitzky, J., Crampes, F., & Berlan, M. (2005). An Unsuspected Metabolic Role for Atrial Natriuretic Peptides The Control of Lipolysis, Lipid Mobilization, and Systemic Nonesterified Fatty Acids Levels in Humans.
Arteriosclerosis, Thrombosis, and Vascular Biology, 25(10), 2032-2042.
Maeda, S., Miyauchi, T., Kakiyama, T., Sugawara, J., Iemitsu, M., Irukayama-Tomobe, Y., ... & Matsuda, M. (2001). Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans.
Life Sciences, 69(9), 1005-1016.
Maeda, S., Otsuki, T., Iemitsu, M., Kamioka, M., Sugawara, J., Kuno, S., ... & Tanaka, H. (2006). Effects of leg resistance training on arterial function in older men.
British Journal of Sports Medicine, 40(10), 867-869.
McKeever, K.
H., & Malinowski, K. (1999). Endocrine response to exercise in young and old horses. Equine Veterinary Journal, 31(S30), 561-566.
Moro, C., Pasarica, M., Elkind-Hirsch, K., & Redman, L. M. (2009). Aerobic exercise training improves atrial natriuretic peptide and catecholamine-mediated lipolysis in obese women with polycystic ovary syndrome.
The Journal of Clinical Endocrinology & Metabolism, 94(7), 2579-2586.
Ramos, J. S., Dalleck, L. C., Tjonna, A. E., Beetham, K. S., & Coombes, J. S. (2015). The Impact of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training on Vascular Function: a Systematic Review and Meta-Analysis.
Sports Medicine, 45(5), 679-692.
Rautureau, Y., Coelho, S. C., Fraulob-Aquino, J. C., Huo, K. G., Rehman, A., Offermanns, S., ... & Schiffrin, E. L. (2015). Inducible human endothelin-1 overexpression in endothelium raises blood pressure via endothelin type A receptors.
Hypertension, 66(2), 347-355.
Robles, J. C., & Heaps, C. L. (2015). Adaptations of the Endothelin System After Exercise Training in a Porcine Model of Ischemic Heart Disease.
Microcirculation, 22(1), 68-78.
Ruskoaho, H. (1992). Atrial natriuretic peptide: synthesis, release, and metabolism.
Pharmacological Reviews, 44(4), 479-602.
Starkoff, B. E., Eneli, I. U., Bonny, A. E., Hoffman, R. P., & Devor, S. T. (2015). Endothelin-1 and Exercise Intensity in Sedentary Adolescents with Obesity.
International Journal of Kinesiology and Sports Science, 3(1), 1-8.
Ströhle, A., Feller, C., Strasburger, C. J., Heinz, A., & Dimeo, F. (2006). Anxiety modulation by the heart? Aerobic exercise and atrial natriuretic peptide.
Psychoneuroendocrinology, 31(9), 1127-1130.
Susic, D., & Varagic, J. (2017). Obesity: A Perspective from Hypertension.
Medical Clinics , 101(1), 139-157.
Verboven, K., Hansen, D., Moro, C., Eijnde, B. O., Hoebers, N., Knol, J., ... & Jocken, J. W. (2016). Attenuated atrial natriuretic peptide-mediated lipolysis in subcutaneous adipocytes of obese type 2 diabetic men.
Clinical science, 130(13), 1105-1114.
Wisén, A. G., Ekberg, K., Wohlfart, B., Ekman, R., & Westrin, Å. (2011). Plasma ANP and BNP during exercise in patients with major depressive disorder and in healthy controls.
Journal of Affective Disorders,129(1), 371-375.