Document Type : Original Article

Authors

1 Associate Professor, Department of Sport Sciences, Faculty of Education and Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran.

2 PhD of Exercise Physiology, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Guilan, Guilan, Iran.

Abstract

Background and Aim: There is not enough information on the effect of exercise training types on perilipins (PLINs) as important regulators of adipose storage and lipolysis. Therefore, the aim of the present study was to investigate the effect of high intensity interval training (HIIT) and moderate intensity continuous training (MICT) on PLIN3 and PLIN5 protein expression of visceral fat in obese male Wistar rats. Materials and Methods: Firstly, the rats were divided into two groups as standard diet (CD) and high fat diet (HFD) and after induction of obesity (with 10 weeks of high fat diet); next, the obese rats were divided into three groups as obese control (OC), MICT and HIIT groups. The HIIT group performed their training protocols including10 bouts of 4-minute running bouts at 85-90% of VO2max with 2-minute active rest intervals per session, and MICT group also were preformed continuous running sessions at 65-70% of VO2max protocols for 12 weeks, five days/week on a rat treadmill, in accordance with the progressive overload principle. The running distance were equalized between two protocols. The Western blot were used to measure the visceral fat PLIN3 and PLIN5 protein expression level. Independent samples t- test, one-way analysis of variance and Tukey tests were applied for extraction of results at the p≤0.05 level. Results: The PLIN5 and PLIN3 levels were higher (p=0.008) and lower (p=0.001) respectively in the HFD group as compare to CD group. On the other hand, PLIN3 level was higher after both HIIT and MICT group compared to OC (p=0.001 and p=0.04 respectively), while there was no differences between two training groups (p=0.90). Moreover, PLIN5 level had no significant differences between OC and HIIT or MICT (p=0.08 and p=0.45 respectively) groups. Conclusion: It seems that both HIIT and MICT may play important roles in lipid droplet metabolism through regulation of PLIN3 expression level in diet induced obesity; while no significant difference was observed between the impact of them.

Keywords

Amati, F., Dubé, J. J., Alvarez-Carnero, E., Edreira, M. M., Chomentowski, P., Coen, P. M., . . .& Toledo, F. G. (2011). Skeletal muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes, 60(10), 2588-2597.
Astorino, T. A., & Schubert, M. M. (2018). Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT). European Journal of Applied Physiology, 118(1), 51-63.
Bosma, M., Minnaard, R., Sparks, L. M., Schaart, G., Losen, M., de Baets, M. H., . . .& Schrauwen, P. (2012). The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochemistry and Cell Biology, 137(2), 205-216.
Bosma, M., Sparks, L., Hooiveld, G., Jorgensen, J., Houten, S., Schrauwen, P., . . .& Hesselink, M. (2013). Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1831(4), 844-852.
Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., . . .& Long, J. Z. (2012). A PGC1-[agr]-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463-468.
Brasaemle, D. L. (2007). Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. Journal of Lipid Research, 48(12), 2547-2559.
Cannon, B. (2004). Nedergaard J. Brown adipose tissue: function and physiological significance. Physiological Reviews, 84(1), 277-359.
Chavanelle, V., Boisseau, N., Otero, Y. F., Combaret, L., Dardevet, D., Montaurier, C., . . .& Sirvent, P. (2017). Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Scientific Reports, 7(1), 204.
Covington, J. D., Bajpeyi, S., Moro, C., Tchoukalova, Y. D., Ebenezer, P. J., Burk, D. H., . . .& Redman, L. M. (2015). Potential effects of aerobic exercise on the expression of perilipin 3 in the adipose tissue of women with polycystic ovary syndrome: a pilot study. European Journal of Endocrinology, 172(1), 47-58.
Covington, J. D., Johannsen, D. L., Coen, P. M., Burk, D. H., Obanda, D. N., Ebenezer, P. J., . . .& Bajpeyi, S. (2017). Intramyocellular lipid droplet size rather than total lipid content is related to insulin sensitivity after 8 weeks of overfeeding. Obesity, 25(12), 2079-2087.
Dalen, K. T., Dahl, T., Holter, E., Arntsen, B., Londos, C., Sztalryd, C., & Nebb, H. I. (2007). LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1771(2), 210-227.
Ellong, E. N., Soni, K. G., Bui, Q.-T., Sougrat, R., Golinelli-Cohen, M. P., & Jackson, C. L. (2011). Interaction between the triglyceride lipase ATGL and the Arf1 activator GBF1. PloS One, 6(7), e21889.
Ghafari, M., Faramarzi, M., Banitalebi, E. (2018). Compar two different endurance training intensities on perilipin 3 protein expression in skeletal muscle, serum glucose levels and insulin in streptozotocin-induced diabetic rats. Iranian Journal of Diabetes and Metabolism, 17(4),198-205. [Persian]
Gjelstad, I., Haugen, F., Gulseth, H., Norheim, F., Jans, A., Bakke, S., . . .& Blaak, E. (2012). Expression of perilipins in human skeletal muscle in vitro and in vivo in relation to diet, exercise and energy balance. Archives of Physiology and Biochemistry, 118(1), 22-30.
Hafstad, A. D., Lund, J., Hadler-Olsen, E., Höper, A. C., Larsen, T. S., & Aasum, E. (2013). High-and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes, 62(7), 2287-2294.
Huh, J. Y., Mougios, V., Kabasakalis, A., Fatouros, I., Siopi, A., Douroudos, I. I., . . .& Mantzoros, C. S. (2014). Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism
through AMPK activation. The Journal of Clinical Endocrinology & Metabolism, 99(11), E2154-E2161.
Itabe, H., Yamaguchi, T., Nimura, S., & Sasabe, N. (2017). Perilipins: a diversity of intracellular lipid droplet proteins. Lipids in Health and Disease, 16(1), 83-91.
Kleinert, M., Parker, B. L., Chaudhuri, R., Fazakerley, D. J., Serup, A., Thomas, K. C., . . .& Richter, E. A. (2016). mTORC2 and AMPK differentially regulate muscle triglyceride content via Perilipin 3. Molecular Metabolism, 5 (8):646-655.
Ko, K., Woo, J., Bae, J. Y., Roh, H. T., Lee, Y. H., & Shin, K. O. (2018). Exercise training improves intramuscular triglyceride lipolysis sensitivity in high-fat diet induced obese mice. Lipids in Health and Disease, 17(1), 81-9.
Kuramoto, K., Okamura, T., Yamaguchi, T., Nakamura, T. Y., Wakabayashi, S., Morinaga, H., . . .& Usuda, N. (2012). Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. Journal of Biological Chemistry, 287(28), 23852-23863.
Liu, X., Niu, Y., Yuan, H., Huang, J., & Fu, L. (2015). AMPK binds to Sestrins and mediates the effect of exercise to increase insulin-sensitivity through autophagy. Metabolism, 64(6), 665-68.
Louche, K., Badin, P.-M., Montastier, E., Laurens, C., Bourlier, V., de Glisezinski, I., . . .& Moro, C. (2013). Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. The Journal of Clinical Endocrinology & Metabolism, 98(12), 4863-4871.
MacPherson, R. E., Ramos, S. V., Vandenboom, R., Roy, B. D., & Peters, S. J. (2013). Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304(8), R644-R650.
Minnaard, R., Schrauwen, P., Schaart, G., Jorgensen, J. A., Lenaers, E., Mensink, M., & Hesselink, M. K. (2009). Adipocyte differentiation-related protein and OXPAT in rat and human skeletal muscle: involvement in lipid accumulation and type 2 diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism, 94(10), 4077-4085.
Moghadami, K., Mohebbi, H., Khalafi, M., Akbari, A., Faridnia, M., & Tabari, E. (2018). The effect of interval training intensity on protein levels of ATGL and Perilipin 5 in visceral adipose tissue of type 2 diabetic male rats. International Journal of Applied Exercise Physiology, 7(4), 62-70.
Osumi, T., & Kuramoto, K. (2016). Heart lipid droplets and lipid droplet-binding proteins: Biochemistry, physiology, and pathology. Experimental Cell Research, 340(2), 198-204.
Peters, S. J., Samjoo, I. A., Devries, M. C., Stevic, I., Robertshaw, H. A., & Tarnopolsky, M. A. (2012). Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Applied Physiology,Nnutrition, and Metabolism, 37(4), 724-735.
Pollak, N. M., Schweiger, M., Jaeger, D., Kolb, D., Kumari, M., Schreiber, R., . . .& Heier, C. (2013). Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier. Journal of Lipid Research, 54(4), 1092-1102.
Prats, C., Donsmark, M., Qvortrup, K., Londos, C., Sztalryd, C., Holm, C., . . .& Ploug, T. (2006). Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. Journal of Lipid Research, 47(11), 2392-2399.
Ramos, S., Turnbull, P., MacPherson, R., LeBlanc, P., Ward, W., & Peters, S. (2015). Changes in mitochondrial perilipin 3 and perilipin 5 protein content in rat skeletal muscle following endurance training and acute stimulated contraction.
Experimental Physiology, 100(4), 450-462.
Ramos, S. V., MacPherson, R. E., Turnbull, P. C., Bott, K. N., LeBlanc, P., Ward, W. E., & Peters, S. J. (2014). Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb. Physiological Reports, 2(10):e12154.
Rinnankoski-Tuikka, R., Hulmi, J. J., Torvinen, S., Silvennoinen, M., Lehti, M., Kivelä, R., . . .& Kainulainen, H. (2014). Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change. Metabolism, 63(8), 1031-104.
Shaw, C. S., Shepherd, S. O., Wagenmakers, A. J., Hansen, D., Dendale, P., & van Loon, L. J. (2012). Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism, 303(9), E1158-1165.
Shepherd, S. O., Cocks, M., Meikle, P. J., Mellett, N. A., Ranasinghe, A. M., Barker, T. A., . . .& Shaw, C. S. (2017). Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males. International Journal of Obesity, 41(12), 1745-1754.
Shepherd, S. O., Cocks, M., Tipton, K., Ranasinghe, A. M., Barker, T. A., Burniston, J. G., . . .& Shaw, C. S. (2013). Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. The Journal of Physiology, 591(3), 657-675.
Skinner, J. R., Shew, T. M., Schwartz, D. M., Tzekov, A., Lepus, C. M., Abumrad, N. A., & Wolins, N. E. (2009). Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization. Journal of Biological Chemistry, 284(45), 30941-30948.
Soni, K. G., Mardones, G. A., Sougrat, R., Smirnova, E., Jackson, C. L., & Bonifacino, J. S. (2009). Coatomer-dependent protein delivery to lipid droplets. Journal of Cell Science, 122(11), 1834-1841.
Stallknecht, B., Vinten, J., Ploug, T., & Galbo, H. (1991). Increased activities of mitochondrial enzymes in white adipose tissue in trained rats. American Journal of Physiology-Endocrinology and Metabolism, 261(3), E410-E414.
Sutherland, L. N., Bomhof, M. R., Capozzi, L. C., Basaraba, S. A., & Wright, D. C. (2009). Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue. The Journal of physiology, 587(7), 1607-1617.
Sztalryd, C., & Kimmel, A. R. (2014). Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie, 96, 96-101.
Trevellin, E., Scorzeto, M., Olivieri, M., Granzotto, M., Valerio, A., Tedesco, L., . . .& Reggiani, C. (2014). Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes, 63(8), 2800-2811.
Wang, C., Zhao, Y., Gao, X., Li, L., Yuan, Y., Liu, F., . . .& Zhang, X. (2015). Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology, 61(3), 870-882.
Wang, H., Sreenivasan, U., Hu, H., Saladino, A., Polster, B. M., Lund, L. M., . . .& Sztalryd, C. (2011). Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. Journal of Lipid Research, 52(12), 2159-2168.
Wolins, N. E., Quaynor, B. K., Skinner, J. R., Schoenfish, M. J., Tzekov, A., & Bickel, P. E. (2005). S3-12, Adipophilin, and TIP47 package lipid in adipocytes. Journal of Biological Chemistry, 280(19), 19146-19155.